Suppr超能文献

使用无监督自适应盲源分离技术从脑电图信号中实时抑制眼部伪影。

Real-time ocular artifacts suppression from EEG signals using an unsupervised adaptive blind source separation.

作者信息

Shayegh Farzaneh, Erfanian Abbas

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering, Iran University of Science & Technology, Tehran, Iran.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5269-72. doi: 10.1109/IEMBS.2006.259611.

Abstract

Independent component analysis (ICA) has been shown to be a powerful tool for artifactual suppression from electroencephalogram (EEG) recordings. However, the real-time application of this method for artifact rejection has not been considered so far. This article presents a method based on an unsupervised, self-normalizing, adaptive learning algorithm for on-line blind source separation. Simulation results are provided to show the validity and effectiveness of the technique with different distributions. The results from real-data demonstrate that the proposed scheme removes perfectly eye blink and eye movement artifacts from the EEG signals and is suitable for use during on-line EEG monitoring such as EEG-based brain computer interface.

摘要

独立成分分析(ICA)已被证明是一种从脑电图(EEG)记录中抑制伪迹的强大工具。然而,到目前为止尚未考虑将该方法实时应用于伪迹去除。本文提出了一种基于无监督、自归一化、自适应学习算法的在线盲源分离方法。提供了仿真结果以表明该技术在不同分布下的有效性。实际数据结果表明,所提出的方案能够完美地从EEG信号中去除眨眼和眼球运动伪迹,适用于基于EEG的脑机接口等在线EEG监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验