The School of Electrical & Computer Engineering, Shiraz University, Shiraz, Iran.
Commissariat à l'Énergie Atomique et aux Énergies Alternatives - CEA, LIST, Laboratoire d'Analyse des Données et Intelligence des Systèmes, 91 191 Gif-sur-Yvette, CEDEX, France.
J Neurosci Methods. 2014 Mar 30;225:97-105. doi: 10.1016/j.jneumeth.2014.01.024. Epub 2014 Jan 31.
Electroencephalogram (EEG) measurements are always contaminated by non-cerebral signals, which disturb EEG interpretability. Among the different artifacts, ocular artifacts are the most disturbing ones. In previous studies, limited improvement has been obtained using frequency-based methods. Spatial decomposition methods have shown to be more effective for removing ocular artifacts from EEG recordings. Nevertheless, these methods are not able to completely separate cerebral and ocular signals and commonly eliminate important features of the EEG.
In a previous study we have shown the applicability of a deflation algorithm based on generalized eigenvalue decomposition for separating desired and undesired signal subspaces. In this work, we extend this idea for the automatic detection and removal of electrooculogram (EOG) artifacts from multichannel EEG recordings. The notion of effective number of identifiable dimensions, is also used to estimate the number of dominant dimensions of the ocular subspace, which enables the precise and fast convergence of the algorithm.
The method is applied on real and synthetic data. It is shown that the method enables the separation of cerebral and ocular signals with minimal interference with cerebral signals.
COMPARISON WITH EXISTING METHOD(S): The proposed approach is compared with two widely used denoising techniques based on independent component analysis (ICA).
It is shown that the algorithm outperformed ICA-based approaches. Moreover, the method is computationally efficient and is implemented in real-time. Due to its semi-automatic structure and low computational cost, it has broad applications in real-time EEG monitoring systems and brain-computer interface experiments.
脑电图(EEG)测量总是受到非脑信号的污染,这会干扰 EEG 的可解释性。在不同的伪迹中,眼动伪迹是最干扰的。在之前的研究中,基于频率的方法已经取得了有限的改进。空间分解方法已被证明对于从 EEG 记录中去除眼动伪迹更有效。然而,这些方法无法完全分离脑和眼动信号,并且通常会消除 EEG 的重要特征。
在之前的一项研究中,我们展示了基于广义特征值分解的放气算法在分离期望和不期望信号子空间方面的适用性。在这项工作中,我们将这一思想扩展到用于从多通道 EEG 记录中自动检测和去除眼电图(EOG)伪迹的方法。有效可识别维度的概念也用于估计眼动子空间的主导维度数,这使得算法能够精确快速地收敛。
该方法应用于真实和合成数据。结果表明,该方法能够以最小的脑信号干扰分离脑和眼动信号。
所提出的方法与两种广泛使用的基于独立分量分析(ICA)的去噪技术进行了比较。
结果表明,该算法优于基于 ICA 的方法。此外,该方法计算效率高,实时实现。由于其半自动结构和低计算成本,它在实时 EEG 监测系统和脑机接口实验中有广泛的应用。