Suppr超能文献

考虑个体分层临床试验数据中的变异性。

Accounting for variability in individual hierarchical clinical trial data.

作者信息

Tibaldi Fabián, Renard Didier, Molenberghs Geert

机构信息

GlaxoSmithKline Biologicals, Rixensart, Belgium.

出版信息

Pharm Stat. 2008 Oct-Dec;7(4):285-93. doi: 10.1002/pst.313.

Abstract

Meta-analytical approaches have been extensively used to analyze medical data. In most cases, the data come from different studies or independent trials with similar characteristics. However, these methods can be applied in a broader sense. In this paper, we show how existing meta-analytic techniques can also be used as well when dealing with parameters estimated from individual hierarchical data. Specifically, we propose to apply statistical methods that account for the variances (and possibly covariances) of such measures. The estimated parameters together with their estimated variances can be incorporated into a general linear mixed model framework. We illustrate the methodology by using data from a first-in-man study and a simulated data set. The analysis was implemented with the SAS procedure MIXED and example code is offered.

摘要

荟萃分析方法已被广泛用于分析医学数据。在大多数情况下,数据来自不同的研究或具有相似特征的独立试验。然而,这些方法可以在更广泛的意义上应用。在本文中,我们展示了在处理从个体分层数据估计的参数时,现有的荟萃分析技术如何也能被使用。具体而言,我们建议应用考虑此类测量的方差(以及可能的协方差)的统计方法。估计的参数及其估计的方差可以纳入一个通用线性混合模型框架。我们通过使用一项首次人体研究的数据和一个模拟数据集来说明该方法。分析是使用SAS过程MIXED进行的,并提供了示例代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验