Arends Lidia R, Hunink M G Myriam, Stijnen Theo
Department of Epidemiology & Biostatistics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
Stat Med. 2008 Sep 30;27(22):4381-96. doi: 10.1002/sim.3311.
The use of standard univariate fixed- and random-effects models in meta-analysis has become well known in the last 20 years. However, these models are unsuitable for meta-analysis of clinical trials that present multiple survival estimates (usually illustrated by a survival curve) during a follow-up period. Therefore, special methods are needed to combine the survival curve data from different trials in a meta-analysis. For this purpose, only fixed-effects models have been suggested in the literature. In this paper, we propose a multivariate random-effects model for joint analysis of survival proportions reported at multiple time points and in different studies, to be combined in a meta-analysis. The model could be seen as a generalization of the fixed-effects model of Dear (Biometrics 1994; 50:989-1002). We illustrate the method by using a simulated data example as well as using a clinical data example of meta-analysis with aggregated survival curve data. All analyses can be carried out with standard general linear MIXED model software.
在过去20年里,标准单变量固定效应和随机效应模型在荟萃分析中的应用已广为人知。然而,这些模型不适用于对在随访期间呈现多个生存估计值(通常用生存曲线表示)的临床试验进行荟萃分析。因此,需要特殊方法在荟萃分析中合并来自不同试验的生存曲线数据。为此,文献中仅提出了固定效应模型。在本文中,我们提出了一种多变量随机效应模型,用于对多个时间点以及不同研究中报告的生存比例进行联合分析,以便在荟萃分析中进行合并。该模型可视为Dear固定效应模型(《生物统计学》1994年;50:989 - 1002)的推广。我们通过一个模拟数据示例以及一个具有汇总生存曲线数据的荟萃分析临床数据示例来说明该方法。所有分析均可使用标准的一般线性混合模型软件进行。