Raman Arjun S, Bell M Justine, Lau Kai-Chung, Butler Laurie J
The James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2007 Oct 21;127(15):154316. doi: 10.1063/1.2776268.
These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(2P1/2):Cl(2P3/2) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C2H3, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.
这些速度映射成像实验表征了OH通过加成机制与丙二烯反应时形成的两种自由基中间体之一的光解生成过程。CH2CCH2OH自由基中间体是由2-氯-2-丙烯-1-醇在193nm处的光解离光解生成的。使用[2+1]共振增强多光子电离检测Cl原子,证明了Cl+CH2CCH2OH光碎片的各向同性角分布、Cl(2P1/2):Cl(2P3/2)的自旋轨道分支比为0.28,以及双峰反冲动能分布。动量和能量守恒使我们能够根据这些数据确定新生CH2CCH2OH自由基共碎片的内能分布。为了评估这种高振动激发自由基中间体可能的后续分解途径,我们在G3//B3LYP理论水平上进行了电子结构计算。它们预测了从初始CH2CCH2OH自由基中间体到该自由基中间体预期的OH+丙二烯反应的三个最重要产物通道的异构化和解离过渡态:甲醛+C2H3、H+丙烯醛和乙烯+CHO。我们还计算了由OH加成到丙二烯中心碳形成的另一种自由基加合物到乙烯酮+CH3产物通道的中间体和过渡态。我们将我们的结果与之前在CBS-QB3理论水平上对O+烯丙基反应的理论研究进行了比较,因为这两个反应包括几个常见的中间体。