Tang Xiaonan, Ratliff Britni J, FitzPatrick Benjamin L, Butler Laurie J
The James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA.
J Phys Chem B. 2008 Dec 18;112(50):16050-8. doi: 10.1021/jp8057417.
This work uses velocity map imaging to determine the barrier height for acetyl radical, CH3CO, dissociation to CH3 + CO. Photodissociation of acetyl chloride at 235 nm generates acetyl radicals with an internal energy distribution spanning this barrier. We determine the velocity and internal energy distribution of all nascent acetyl radicals, stable and unstable, by measuring the velocities of the Cl(2P3/2) and Cl(2P1/2) cofragments. These Cl cofragments are detected with 2 + 1 resonance-enhanced multiphoton ionization (REMPI) in a spin-orbit branching ratio Cl(2P3/2):Cl(2P1/2) of 3.3 +/- 0.2. Using 157 nm photoionization, we then detect the recoil velocities of the energetically stable acetyl radicals. The radicals and momentum matched Cl atoms evidence parallel angular distributions. Comparison of the total recoil translational energy distribution P(E(T)) for all radicals to that obtained from the detection of stable radicals yields an onset for dissociation at a translational energy of 25.0 +/- 0.4 kcal/mol. From this onset we can calculate the barrier height for CH3CO --> CH3 + CO, but this relies on prior determinations of the C-Cl bond energy of acetyl chloride. Using an experimental bond dissociation energy of 83.4 +/- 0.2 kcal/mol yields a dissociation barrier of 14.2 +/- 0.5 kcal/mol. Our data evidence that a portion of the acetyl radicals formed with total internal energy above the barrier are stable due to the partitioning of energy into rotation during the C-Cl bond fission of the precursor. Thus, the internal energy onset for dissociation is not as sharp as was assumed in prior determinations of the barrier. The experimentally determined onset is compared with that predicted from electronic structure calculations at the G3//B3LYP and CCSD(T) levels of theory.
本研究利用速度成像技术测定乙酰基(CH3CO)分解为CH3 + CO的势垒高度。在235 nm波长下光解乙酰氯会产生具有跨越该势垒的内能分布的乙酰基。我们通过测量Cl(2P3/2)和Cl(2P1/2)伴随碎片的速度来确定所有新生乙酰基(稳定的和不稳定的)的速度和内能分布。这些Cl伴随碎片通过2 + 1共振增强多光子电离(REMPI)进行检测,其自旋轨道分支比Cl(2P3/2):Cl(2P1/2)为3.3 ± 0.2。然后,利用157 nm光电离,我们检测能量稳定的乙酰基的反冲速度。这些自由基和动量匹配的Cl原子呈现出平行的角分布。将所有自由基的总反冲平动能量分布P(E(T))与通过检测稳定自由基得到的分布进行比较,得出解离的起始平动能为25.0 ± 0.4 kcal/mol。由此起始能量我们可以计算CH3CO → CH3 + CO的势垒高度,但这依赖于之前对乙酰氯C-Cl键能的测定。使用83.4 ± 0.2 kcal/mol的实验键解离能得出解离势垒为14.2 ± 0.5 kcal/mol。我们的数据表明,一部分总内能高于势垒的乙酰基在前体的C-Cl键断裂过程中由于能量分配到转动上而稳定。因此,解离的内能起始点不像之前势垒测定中所假设的那样尖锐。将实验测定的起始点与在G3//B3LYP和CCSD(T)理论水平下电子结构计算预测的结果进行比较。