Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada.
Biochemistry. 2013 Apr 9;52(14):2419-26. doi: 10.1021/bi400187w. Epub 2013 Mar 29.
Membrane proteins adopt two fundamental types of folds in nature: membranes in all organisms harbor α-helical bundles linked by extramembranous loops of varying length, while β-barrel structures are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. Here we report that turn-inducing loop mutations in a transmembrane hairpin induce the conversion of an α-helical hairpin to β-sheet oligomers in membrane environments. On the basis of an observation of a sequence bias toward Pro and Gly in the turns of native β-barrel membrane proteins, we characterized in sodium dodecyl sulfate (SDS) micelles and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers several "hairpin" constructs of cystic fibrosis transmembrane conductance regulator transmembrane segments 3 and 4 (TM3-loop-TM4; loop region being (215)IWELLQASA(223)) in which Pro-Gly residues were either inserted or substituted at several positions. Remarkably, suitable positioning of the Pro-Gly doublet caused the adoption of stable β-sheet structures by several mutants in SDS micelles, as shown by circular dichroism spectroscopy, concurrent with a ladder of discrete oligomers observed via SDS-polyacrylamide gel electrophoresis. Reconstitution of wild-type (WT) TM3/4 into POPC vesicles studied by Trp fluorescence, in conjunction with positional quenchers in brominated phospholipids, indicated a transbilayer position for helical WT TM3/4, but likely a largely surface-embedded conformation for the β-sheet mutant with loop region IWPGELLQASA. To the best of our knowledge, such a complete change in the fold with a minimal number of mutations has not been previously observed for a membrane protein. These facile α-helix to β-sheet conversions highlight the contribution of loops to membrane protein structure.
所有生物的膜都含有由不同长度的跨膜环连接的α-螺旋束,而β-桶结构则存在于革兰氏阴性菌、线粒体和叶绿体的外膜中。在这里,我们报告在跨膜发夹中的转角诱导环突变会在膜环境中诱导α-螺旋发夹向β-折叠寡聚物的转变。基于对天然β-桶膜蛋白转角中脯氨酸和甘氨酸序列偏好的观察,我们在十二烷基硫酸钠(SDS)胶束和 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)双层中对囊性纤维化跨膜电导调节剂跨膜片段 3 和 4 的几个“发夹”结构进行了特征描述(TM3-环-TM4;环区为(215)IWELLQASA(223)),其中脯氨酸-甘氨酸残基在几个位置被插入或取代。值得注意的是,合适位置的脯氨酸-甘氨酸二联体导致几个突变体在 SDS 胶束中采用稳定的β-折叠结构,这可以通过圆二色性光谱来证明,同时通过 SDS-聚丙烯酰胺凝胶电泳观察到离散寡聚物的阶梯。通过色氨酸荧光研究野生型(WT)TM3/4 再构成 POPC 囊泡,结合溴化磷脂中的位置猝灭剂,表明螺旋 WT TM3/4 具有跨膜位置,但具有环区 IWPGELLQASA 的β-折叠突变体可能主要是表面嵌入构象。据我们所知,对于膜蛋白来说,这种折叠的完全变化以前没有用如此少的突变观察到过。这些易于发生的从α-螺旋到β-折叠的转变突出了环对膜蛋白结构的贡献。