Sdraulig S, Franich R, Tinker R A, Solomon S, O'Brien R, Johnston P N
Australian Radiation Protection and Nuclear Safety Agency, 619 Lower Plenty Road, Yallambie, VIC 3085, Australia.
J Environ Radioact. 2008 Mar;99(3):527-38. doi: 10.1016/j.jenvrad.2007.08.009. Epub 2007 Oct 18.
Inhaled uranium (U) bearing material will partially dissolve in the fluid lining of the lung, followed by a combination of retention, re-distribution, and excretion of the U. The rate of dissolution influences the retention time at the site of deposition, and the extent to which the material is available for re-distribution to other tissues. The consequential radiation dose is dependent upon the material distribution in the body and the exposure time to various tissues. The International Commission on Radiological Protection, ICRP 66 [International Commission on Radiological Protection (ICRP), 1994. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66] recommends the use of experimentally determined solubility coefficients in dose modelling. Material specific absorption parameters allow for better dose estimation than using ICRP default values for F (fast), M (moderate) and S (slow) classifications of U compounds. In vitro dissolution tests were carried out on U material collected from two U mines located in Australia. A static technique was designed in which particle samples were sandwiched between two 0.1-mum pore size membrane filters. The filter sandwich was exposed to a solvent (simulated lung fluid) for selected time intervals, at controlled test conditions for temperature and pH. The collected solution was analysed for U concentration using ICP-MS. The resulting dissolution curves were fitted with a double or triple exponential equation to determine the dissolution coefficients.
吸入含铀(U)物质会部分溶解于肺内的液体衬里中,随后铀会经历滞留、重新分布和排泄的过程。溶解速率会影响其在沉积部位的滞留时间,以及该物质可重新分布到其他组织的程度。由此产生的辐射剂量取决于该物质在体内的分布以及对各种组织的暴露时间。国际放射防护委员会(ICRP)第66号出版物[国际放射防护委员会(ICRP),1994年。用于放射防护的人类呼吸道模型。ICRP第66号出版物]建议在剂量建模中使用实验确定的溶解度系数。与使用ICRP对铀化合物的F(快)、M(中)和S(慢)分类的默认值相比,材料特定的吸收参数能实现更好的剂量估算。对从澳大利亚的两座铀矿采集的铀物质进行了体外溶解试验。设计了一种静态技术,其中将颗粒样品夹在两个孔径为0.1微米的膜过滤器之间。在温度和pH值可控的测试条件下,将过滤器夹层在选定的时间间隔内暴露于一种溶剂(模拟肺液)中。使用电感耦合等离子体质谱法(ICP-MS)分析收集到的溶液中的铀浓度。将得到的溶解曲线与双指数或三指数方程拟合,以确定溶解系数。