Suppr超能文献

肺毛细血管和肺泡外内皮细胞的表型异质性。肺泡外内皮通透性增加足以降低顺应性。

Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance.

作者信息

Lowe Kevin, Alvarez Diego, King Judy, Stevens Troy

机构信息

Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA.

出版信息

J Surg Res. 2007 Nov;143(1):70-7. doi: 10.1016/j.jss.2007.03.047.

Abstract

BACKGROUND

In acute respiratory distress syndrome, pulmonary vascular permeability increases, causing intravascular fluid and protein to move into the lung's interstitium. The classic model describing the formation of pulmonary edema suggests that fluid crossing the capillary endothelium is drawn by negative interstitial pressure into the potential space surrounding extra-alveolar vessels and, as interstitial pressure builds, is forced into the alveolar air space. However, the validity of this model is challenged by animal models of acute lung injury in which extra-alveolar vessels are more permeable than capillaries under a variety of conditions. In the current study, we sought to determine whether extravascular fluid accumulation can be produced because of increased permeability of either the capillary or extra-alveolar endothelium, and whether different pathophysiology results from such site-specific increases in permeability.

MATERIALS AND METHODS

We perfused isolated lungs with either the plant alkaloid thapsigargin, which increases extra-alveolar endothelial permeability, or with 4alpha-phorbol 12, 13-didecanoate, which increases capillary endothelial permeability.

RESULTS

Both treatments produced equal increases in whole lung vascular permeability, but caused fluid accumulations in separate anatomical compartments. Light microscopy of isolated lungs showed that thapsigargin caused fluid cuffing of large vessels, while 4alpha-phorbol 12, 13-didecanoate caused alveolar flooding. Dynamic compliance was reduced in lungs with cuffing of large vessels, but not in lungs with alveolar flooding.

CONCLUSIONS

Phenotypic differences between vascular segments resulted in site-specific increases in permeability, which have different pathophysiological outcomes. Our findings suggest that insults leading to acute respiratory distress syndrome may increase permeability in extra-alveolar or capillary vascular segments, resulting in different pathophysiological sequela.

摘要

背景

在急性呼吸窘迫综合征中,肺血管通透性增加,导致血管内液体和蛋白质进入肺间质。描述肺水肿形成的经典模型表明,穿过毛细血管内皮的液体被间质负压吸引到肺泡外血管周围的潜在间隙中,并且随着间质压力的升高,被强行挤入肺泡气腔。然而,在各种情况下肺泡外血管比毛细血管更具通透性的急性肺损伤动物模型对该模型的有效性提出了挑战。在本研究中,我们试图确定血管外液体积聚是否可因毛细血管或肺泡外内皮通透性增加而产生,以及这种部位特异性通透性增加是否会导致不同的病理生理学结果。

材料与方法

我们用增加肺泡外内皮通透性的植物生物碱毒胡萝卜素或增加毛细血管内皮通透性的4α-佛波醇12,13-十四酸酯灌注离体肺。

结果

两种处理均使全肺血管通透性同等增加,但导致液体在不同的解剖区域积聚。离体肺的光学显微镜检查显示,毒胡萝卜素导致大血管周围出现液体套袖,而4α-佛波醇12,13-十四酸酯导致肺泡内积水。大血管周围出现液体套袖的肺动态顺应性降低,但肺泡内积水的肺则未降低。

结论

血管段之间的表型差异导致部位特异性通透性增加,产生不同的病理生理结果。我们的研究结果表明,导致急性呼吸窘迫综合征的损伤可能会增加肺泡外或毛细血管血管段的通透性,从而导致不同的病理生理后遗症。

相似文献

2
Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance.
Crit Care Med. 2010 Jun;38(6):1458-66. doi: 10.1097/CCM.0b013e3181de18f0.
3
The effect of endothelin-1 on alveolar fluid clearance and pulmonary edema formation in the rat.
Anesth Analg. 2009 Jan;108(1):225-31. doi: 10.1213/ane.0b013e31818881a8.
5
Differential effects of sustained inflation recruitment maneuvers on alveolar epithelial and lung endothelial injury.
Crit Care Med. 2005 Jan;33(1):181-8; discussion 254-5. doi: 10.1097/01.ccm.0000150663.45778.c4.
6
Take my breath away: perivascular fluid cuffs impair lung mechanics.
Crit Care Med. 2010 Jun;38(6):1494-6. doi: 10.1097/CCM.0b013e3181defcb9.
7
Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema.
Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L859-69. doi: 10.1152/ajplung.00008.2007. Epub 2007 Jul 6.
8
Hydraulic conductance of lung endothelial phenotypes and Starling safety factors against edema.
Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L378-80. doi: 10.1152/ajplung.00196.2006. Epub 2006 Oct 13.
9
Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.
J Appl Physiol (1985). 2014 Oct 1;117(7):788-96. doi: 10.1152/japplphysiol.00569.2014. Epub 2014 Jul 31.

引用本文的文献

1
Lung endothelium, tau, and amyloids in health and disease.
Physiol Rev. 2024 Apr 1;104(2):533-587. doi: 10.1152/physrev.00006.2023. Epub 2023 Aug 10.
3
The role of endothelial leak in pulmonary hypertension (2017 Grover Conference Series).
Pulm Circ. 2018 Oct-Dec;8(4):2045894018798569. doi: 10.1177/2045894018798569. Epub 2018 Aug 20.
5
Endothelial Cell Reactive Oxygen Species and Ca Signaling in Pulmonary Hypertension.
Adv Exp Med Biol. 2017;967:299-314. doi: 10.1007/978-3-319-63245-2_18.
7
Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry.
Am J Physiol Lung Cell Mol Physiol. 2016 Sep 1;311(3):L560-9. doi: 10.1152/ajplung.00057.2016. Epub 2016 Jul 15.
8
Caspase-1 Activation Protects Lung Endothelial Barrier Function during Infection-Induced Stress.
Am J Respir Cell Mol Biol. 2016 Oct;55(4):500-510. doi: 10.1165/rcmb.2015-0386OC.
9
Lung Circulation.
Compr Physiol. 2016 Mar 15;6(2):897-943. doi: 10.1002/cphy.c140049.
10
Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4.
Am J Physiol Lung Cell Mol Physiol. 2015 Dec 15;309(12):L1467-77. doi: 10.1152/ajplung.00275.2015. Epub 2015 Oct 9.

本文引用的文献

1
Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury.
Circ Res. 2006 Oct 27;99(9):988-95. doi: 10.1161/01.RES.0000247065.11756.19. Epub 2006 Sep 28.
2
Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers.
Am J Physiol Lung Cell Mol Physiol. 2006 Jul;291(1):L30-7. doi: 10.1152/ajplung.00317.2005.
3
Resistance to store depletion-induced endothelial injury in rat lung after chronic heart failure.
Am J Respir Crit Care Med. 2005 Nov 1;172(9):1153-60. doi: 10.1164/rccm.200506-847OC. Epub 2005 Jul 28.
4
Essential role of a Ca2+-selective, store-operated current (ISOC) in endothelial cell permeability: determinants of the vascular leak site.
Circ Res. 2005 Apr 29;96(8):856-63. doi: 10.1161/01.RES.0000163632.67282.1f. Epub 2005 Mar 24.
6
Evaluation of lung injury in rats and mice.
Am J Physiol Lung Cell Mol Physiol. 2004 Feb;286(2):L231-46. doi: 10.1152/ajplung.00049.2003.
7
TRPV4 calcium entry channel: a paradigm for gating diversity.
Am J Physiol Cell Physiol. 2004 Feb;286(2):C195-205. doi: 10.1152/ajpcell.00365.2003.
9
Pulmonary mechanics during induced pulmonary edema in anesthetized dogs.
J Appl Physiol. 1959 Mar;14(2):177-86. doi: 10.1152/jappl.1959.14.2.177.
10
Vascular segmental permeabilities at high peak inflation pressure in isolated rat lungs.
Am J Physiol Lung Cell Mol Physiol. 2002 Dec;283(6):L1203-9. doi: 10.1152/ajplung.00488.2001. Epub 2002 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验