Bhatt Kirit A, Chang Eric I, Warren Stephen M, Lin Shin-E, Bastidas Nicholas, Ghali Shadi, Thibboneir Aurelia, Capla Jennifer M, McCarthy Joseph G, Gurtner Geoffrey C
Institute of Reconstructive Plastic Surgery, New York University School of Medicine, New York, New York, USA.
J Surg Res. 2007 Dec;143(2):329-36. doi: 10.1016/j.jss.2007.01.023. Epub 2007 Oct 22.
Distraction osteogenesis is a valuable clinical tool; however the molecular mechanisms governing successful distraction remain unknown. We have used a uniaxial in vitro strain device to simulate the uniaxial mechanical environment of the interfragmentary distraction gap.
Using the Flexcell system, normal human osteoblasts were subjected to different levels of cyclical uniaxial mechanical strain. Cellular morphology, proliferation, migration, and the expression of angiogenic (vascular endothelial growth factor [VEGF] and fibroblast growth factor-2 [FGF-2]) and osteogenic (osteonectin, osteopontin, and osteocalcin) proteins and extracellular matrix molecules (collagen IalphaII) were analyzed in response to uniaxial cyclic strain.
Osteoblasts exposed to strain assumed a fusiform spindle-shaped morphology aligning parallel to the axis of uniaxial strain and osteoblasts exposed to strain or conditioned media had a 3-fold increase in proliferation. Osteoblast migration was maximal (5-fold) in response to 9% strain. Angiogenic cytokine, VEGF, and FGF-2, increased 32-fold and 2.6-fold (P < 0.05), respectively. Osteoblasts expressed greater amounts of osteonectin, osteopontin, and osteocalcin (2.1-fold, 1.8-fold, 1.5-fold respectively, P < 0.01) at lower levels of strain (3%). Bone morphogenic protein-2 production increased maximally at 9% strain (1.6-fold, P < 0.01). Collagen I expression increased 13-, 66-, and 153-fold in response to 3, 6, and 9% strain, respectively.
Uniaxial cyclic strain using the Flexcell device under appropriate strain parameters provides a novel in vitro model that induces osteoblast cellular and molecular expression patterns that simulate patterns observed in the in vivo distraction gap.
牵张成骨是一种有价值的临床工具;然而,成功牵张的分子机制仍不清楚。我们使用了一种单轴体外应变装置来模拟骨折间隙牵张的单轴力学环境。
使用Flexcell系统,将正常人成骨细胞置于不同水平的周期性单轴机械应变下。分析了响应单轴循环应变时的细胞形态、增殖、迁移以及血管生成相关蛋白(血管内皮生长因子 [VEGF] 和碱性成纤维细胞生长因子-2 [FGF-2])和成骨相关蛋白(骨连接蛋白、骨桥蛋白和骨钙素)以及细胞外基质分子(I型胶原蛋白α1)的表达。
暴露于应变的成骨细胞呈现梭形纺锤状形态,与单轴应变轴平行排列,暴露于应变或条件培养基的成骨细胞增殖增加了3倍。成骨细胞迁移在9%应变时达到最大值(5倍)。血管生成细胞因子VEGF和FGF-2分别增加了32倍和2.6倍(P < 0.05)。在较低应变水平(3%)下,成骨细胞表达了更多的骨连接蛋白、骨桥蛋白和骨钙素(分别为2.1倍、1.8倍、1.5倍,P < 0.01)。骨形态发生蛋白-2的产生在9%应变时最大程度增加(1.6倍,P < 0.01)。I型胶原蛋白表达在3%、6%和9%应变时分别增加了13倍、66倍和153倍。
在适当的应变参数下,使用Flexcell装置的单轴循环应变提供了一种新的体外模型,可诱导成骨细胞的细胞和分子表达模式,模拟体内牵张间隙中观察到的模式。