Suppr超能文献

一种测定非均匀系统中介电常数的方法:应用于生物膜

A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes.

作者信息

Nymeyer Hugh, Zhou Huan-Xiang

机构信息

Department of Chemistry and Biochemistry, School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA.

出版信息

Biophys J. 2008 Feb 15;94(4):1185-93. doi: 10.1529/biophysj.107.117770. Epub 2007 Oct 19.

Abstract

Continuum electrostatic models have had quantitative success in describing electrostatic-mediated phenomena on atomistic scales; however, there continues to be significant disagreement about how to assign dielectric constants in mixed, nonhomogeneous systems. We introduce a method for determining a position-dependent dielectric profile from molecular dynamics simulations. In this method, the free energy of introducing a test charge is computed two ways: from a free energy perturbation calculation and from a numerical solution to Poisson's Equation. The dielectric profile of the system is then determined by minimizing the discrepancy between these two calculations simultaneously for multiple positions of the test charge. We apply this method to determine the dielectric profile of a lipid bilayer surrounded by water. We find good agreement with dielectric models for lipid bilayers obtained by other approaches. The free energy of transferring an ion from bulk water to the lipid bilayer computed from the atomistic simulations indicates that large errors are introduced when the bilayer is represented as a single slab of low dielectric embedded in the higher-dielectric solvent. Significant improvement results from introducing an additional layer of intermediate dielectric ( approximately 3) on each side of the low dielectric core extending from approximately 12 A to 18 A. A small dip in transfer free energy just outside the lipid headgroups indicates the presence of a very high dielectric. These results have implications for the design of implicit membrane models and our understanding of protein-membrane interactions.

摘要

连续介质静电模型在描述原子尺度上的静电介导现象方面取得了定量成功;然而,在如何为混合的非均匀系统分配介电常数方面,仍然存在重大分歧。我们介绍了一种从分子动力学模拟中确定位置依赖介电分布的方法。在这种方法中,引入测试电荷的自由能通过两种方式计算:从自由能微扰计算和泊松方程的数值解。然后通过同时针对测试电荷的多个位置最小化这两种计算之间的差异来确定系统的介电分布。我们应用这种方法来确定被水包围的脂质双层的介电分布。我们发现与通过其他方法获得的脂质双层介电模型有很好的一致性。从原子模拟计算得出的将离子从本体水转移到脂质双层的自由能表明,当将双层表示为嵌入高介电溶剂中的低介电单平板时会引入很大误差。通过在低介电核心的每一侧引入从约12埃到18埃延伸的额外中间介电层(约为3)可得到显著改善。脂质头部基团外侧转移自由能的小下降表明存在非常高的介电常数。这些结果对隐式膜模型的设计以及我们对蛋白质 - 膜相互作用的理解具有启示意义。

相似文献

1
A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes.
Biophys J. 2008 Feb 15;94(4):1185-93. doi: 10.1529/biophysj.107.117770. Epub 2007 Oct 19.
3
Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021508. doi: 10.1103/PhysRevE.72.021508. Epub 2005 Aug 19.
4
Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model.
PLoS One. 2009;4(3):e4799. doi: 10.1371/journal.pone.0004799. Epub 2009 Mar 11.
5
Electrostatic interactions across a charged lipid bilayer.
Eur Biophys J. 2007 Apr;36(4-5):293-303. doi: 10.1007/s00249-006-0089-z. Epub 2006 Sep 19.
7
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
8
Effects of dielectric discontinuities on two charged plates.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011920. doi: 10.1103/PhysRevE.76.011920. Epub 2007 Jul 26.
9
Continuum electrostatic approach for evaluating positions and interactions of proteins in a bilayer membrane.
J Mol Graph Model. 2015 Jun;59:81-91. doi: 10.1016/j.jmgm.2015.04.003. Epub 2015 Apr 14.
10
Implicit solvation based on generalized Born theory in different dielectric environments.
J Chem Phys. 2004 Jan 8;120(2):903-11. doi: 10.1063/1.1631258.

引用本文的文献

1
Sensing membrane voltage by reorientation of dipolar transmembrane peptides.
Biophys J. 2024 Mar 5;123(5):584-597. doi: 10.1016/j.bpj.2024.01.037. Epub 2024 Feb 1.
2
Measuring anion binding at biomembrane interfaces.
Nat Commun. 2022 Aug 8;13(1):4623. doi: 10.1038/s41467-022-32403-z.
3
Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars.
Membranes (Basel). 2021 Oct 30;11(11):847. doi: 10.3390/membranes11110847.
4
Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design.
Pharmaceuticals (Basel). 2021 Oct 19;14(10):1062. doi: 10.3390/ph14101062.
5
Dynamic "Molecular Portraits" of Biomembranes Drawn by Their Lateral Nanoscale Inhomogeneities.
Int J Mol Sci. 2021 Jun 10;22(12):6250. doi: 10.3390/ijms22126250.
6
Comparative roles of charge, , and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28795-28805. doi: 10.1073/pnas.2008122117. Epub 2020 Nov 2.
7
A Graphic Encoding Method for Quantitative Classification of Protein Structure and Representation of Conformational Changes.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1336-1349. doi: 10.1109/TCBB.2019.2945291. Epub 2021 Aug 6.
8
Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.
J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.

本文引用的文献

1
Do electrostatic interactions destabilize protein-nucleic acid binding?
Biopolymers. 2007 Jun 5;86(2):112-8. doi: 10.1002/bip.20708.
2
Indole localization in lipid membranes revealed by molecular simulation.
Biophys J. 2006 Sep 15;91(6):2046-54. doi: 10.1529/biophysj.105.080275. Epub 2006 Jun 30.
4
Electrostatics calculations: latest methodological advances.
Curr Opin Struct Biol. 2006 Apr;16(2):142-51. doi: 10.1016/j.sbi.2006.03.001. Epub 2006 Mar 15.
5
GROMACS: fast, flexible, and free.
J Comput Chem. 2005 Dec;26(16):1701-18. doi: 10.1002/jcc.20291.
6
Improving implicit solvent simulations: a Poisson-centric view.
Curr Opin Struct Biol. 2005 Apr;15(2):137-43. doi: 10.1016/j.sbi.2005.02.001.
8
Macroscopic electrostatic models for protonation states in proteins.
Front Biosci. 2004 May 1;9:1082-99. doi: 10.2741/1187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验