Suppr超能文献

利用静电力显微镜对水相溶液中支撑脂质双层的介电常数进行纳米尺度测量。

Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy.

机构信息

Departament d'Electrònica, Universitat de Barcelona, Barcelona, Spain.

出版信息

Biophys J. 2013 Mar 19;104(6):1257-62. doi: 10.1016/j.bpj.2013.02.011.

Abstract

We present what is, to our knowledge, the first experimental demonstration of dielectric constant measurement and quantification of supported lipid bilayers in electrolyte solutions with nanoscale spatial resolution. The dielectric constant was quantitatively reconstructed with finite element calculations by combining thickness information and local polarization forces which were measured using an electrostatic force microscope adapted to work in a liquid environment. Measurements of submicrometric dipalmitoylphosphatidylcholine lipid bilayer patches gave dielectric constants of ε(r) ~ 3, which are higher than the values typically reported for the hydrophobic part of lipid membranes (ε(r) ~ 2) and suggest a large contribution of the polar headgroup region to the dielectric response of the lipid bilayer. This work opens apparently new possibilities in the study of biomembrane electrostatics and other bioelectric phenomena.

摘要

我们展示了据我们所知,在纳米尺度空间分辨率下,对电解质溶液中支撑脂双层的介电常数测量和定量的首次实验演示。通过结合厚度信息和使用适应于液体环境工作的静电力显微镜测量的局部极化力,通过有限元计算定量重建了介电常数。对亚微米二棕榈酰磷脂酰胆碱脂质双层斑块的测量给出了ε(r)3 的介电常数,这高于通常报道的脂质膜疏水部分的介电常数(ε(r)2),这表明极性头部区域对脂质双层的介电响应有很大贡献。这项工作显然为生物膜静电学和其他生物电学现象的研究开辟了新的可能性。

相似文献

3
Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes.
Nano Lett. 2009 Apr;9(4):1604-8. doi: 10.1021/nl803851u.
4
A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes.
Biophys J. 2008 Feb 15;94(4):1185-93. doi: 10.1529/biophysj.107.117770. Epub 2007 Oct 19.
5
Aqueous solutions at the interface with phospholipid bilayers.
Acc Chem Res. 2012 Jan 17;45(1):74-82. doi: 10.1021/ar200079x. Epub 2011 Jul 20.
6
Formation and finite element analysis of tethered bilayer lipid structures.
Langmuir. 2010 Dec 7;26(23):18199-208. doi: 10.1021/la1021802. Epub 2010 Oct 26.
7
A polarizable coarse-grained water model for dissipative particle dynamics.
J Chem Phys. 2014 Oct 28;141(16):164506. doi: 10.1063/1.4899317.
8
Continuum theory of lipid bilayer electrostatics.
Eur Phys J E Soft Matter. 2009 Oct;30(2):197-204. doi: 10.1140/epje/i2009-10519-2. Epub 2009 Sep 15.
10
Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects.
Nanotechnology. 2013 Dec 20;24(50):505713. doi: 10.1088/0957-4484/24/50/505713. Epub 2013 Nov 27.

引用本文的文献

1
The Average Electron Density Tool for Bioisosterism in Hydrophobic Media.
ACS Omega. 2025 Aug 5;10(32):36216-36220. doi: 10.1021/acsomega.5c04043. eCollection 2025 Aug 19.
2
Compact Conformation of Ba-Beauvericin Complex by Triple Cation-π Interactions: Insight into Ion Transport Mechanism from Gas-Phase Structures.
J Phys Chem Lett. 2025 Jul 24;16(29):7462-7469. doi: 10.1021/acs.jpclett.5c01573. Epub 2025 Jul 16.
3
Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy.
Beilstein J Nanotechnol. 2025 May 8;16:637-651. doi: 10.3762/bjnano.16.49. eCollection 2025.
4
Linker-Determined Folding and Hydrophobic Interactions Explain a Major Difference in PROTAC Cell Permeability.
ACS Med Chem Lett. 2025 Mar 17;16(4):681-687. doi: 10.1021/acsmedchemlett.5c00068. eCollection 2025 Apr 10.
5
Rational Design of PROTAC Linkers Featuring Ferrocene as a Molecular Hinge to Enable Dynamic Conformational Changes.
J Am Chem Soc. 2025 Apr 23;147(16):13328-13344. doi: 10.1021/jacs.4c18354. Epub 2025 Apr 10.
6
Photoinduced Electron Transfer Across Phospholipid Bilayers in Anaerobic and Aerobic Atmospheres.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202423393. doi: 10.1002/anie.202423393. Epub 2025 Apr 26.
7
Mechanistic studies on pH-permeability relationships: Impact of the membrane polar headgroup region on pKa.
Int J Pharm. 2025 Mar 30;673:125383. doi: 10.1016/j.ijpharm.2025.125383. Epub 2025 Feb 22.
9
Impact of Linker Composition on VHL PROTAC Cell Permeability.
J Med Chem. 2025 Jan 9;68(1):638-657. doi: 10.1021/acs.jmedchem.4c02492. Epub 2024 Dec 18.
10
Electrified Nanogaps under an AC Field: A Molecular Dynamics Study.
J Phys Chem C Nanomater Interfaces. 2024 Nov 29;128(49):21050-21059. doi: 10.1021/acs.jpcc.4c05105. eCollection 2024 Dec 12.

本文引用的文献

1
Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
Sci Technol Adv Mater. 2010 Sep 8;11(3):033003. doi: 10.1088/1468-6996/11/3/033003. eCollection 2010 Jun.
2
The physics of cell membranes.
J Biol Phys. 2003 Dec;29(4):363-99. doi: 10.1023/A:1027362704125.
3
Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe.
Nanotechnology. 2012 May 25;23(20):205703. doi: 10.1088/0957-4484/23/20/205703. Epub 2012 Apr 30.
4
Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy.
Nanotechnology. 2009 Sep 30;20(39):395702. doi: 10.1088/0957-4484/20/39/395702. Epub 2009 Sep 2.
6
Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes.
Biophys J. 2009 May 6;96(9):3461-70. doi: 10.1016/j.bpj.2009.02.012.
7
Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes.
Nano Lett. 2009 Apr;9(4):1604-8. doi: 10.1021/nl803851u.
8
Probing the lipid membrane dipole potential by atomic force microscopy.
Biophys J. 2008 Dec;95(11):5193-9. doi: 10.1529/biophysj.108.136507. Epub 2008 Sep 19.
9
Membrane lipids: where they are and how they behave.
Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24. doi: 10.1038/nrm2330.
10
A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes.
Biophys J. 2008 Feb 15;94(4):1185-93. doi: 10.1529/biophysj.107.117770. Epub 2007 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验