School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, 361005, Xiamen, China.
Nat Commun. 2022 Aug 8;13(1):4623. doi: 10.1038/s41467-022-32403-z.
The quantification of anion binding by molecular receptors within lipid bilayers remains challenging. Here we measure anion binding in lipid bilayers by creating a fluorescent macrocycle featuring a strong sulfate affinity. We find the determinants of anion binding in lipid bilayers to be different from those expected that govern anion binding in solution. Charge-dense anions HPO and Cl that prevail in dimethyl sulfoxide fail to bind to the macrocycle in lipids. In stark contrast, ClO and I that hardly bind in dimethyl sulfoxide show surprisingly significant affinities for the macrocycle in lipids. We reveal a lipid bilayer anion binding principle that depends on anion polarisability and bilayer penetration depth of complexes leading to unexpected advantages of charge-diffuse anions. These insights enhance our understanding of how biological systems select anions and guide the design of functional molecular systems operating at biomembrane interfaces.
在脂质双层中,通过分子受体对阴离子结合的定量仍然具有挑战性。在这里,我们通过创建一个具有强硫酸根亲和力的荧光大环来测量脂质双层中的阴离子结合。我们发现,脂质双层中阴离子结合的决定因素与那些在溶液中控制阴离子结合的决定因素不同。在二甲基亚砜中占主导地位的电荷密集的阴离子 HPO 和 Cl 未能与大环结合。相比之下,在二甲基亚砜中几乎不结合的 ClO 和 I 对大环在脂质中的结合具有惊人的显著亲和力。我们揭示了一种脂质双层阴离子结合原理,该原理取决于阴离子的极化率和复合物在双层中的穿透深度,从而导致电荷扩散阴离子具有意想不到的优势。这些见解增强了我们对生物系统如何选择阴离子以及指导在生物膜界面上运行的功能性分子系统设计的理解。