Betts Dean H, Perrault Steven D, King W Allan
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1.
Biogerontology. 2008 Feb;9(1):19-31. doi: 10.1007/s10522-007-9113-7. Epub 2007 Oct 20.
It has been widely accepted that telomere shortening acts as a cell division counting mechanism that beyond a set critical length signals cells to enter replicative senescence. In this study, we demonstrate that by simply lowering the oxygen content of the cell culture environment 10-fold (20-2%) extends the replicative lifespan of fetal bovine fibroblasts at least five-times (30-150 days). Although, low oxygen fibroblasts display a slightly slower rate (P > 0.05) of telomere attrition than their high oxygen counterparts (171 bp versus 182 bp/PD), late passage fibroblasts (>50 PD) that have extended their replicative capacity under low oxygen conditions exhibited significantly (P < 0.05) shorter telomere lengths (11,135 +/- 467 bp) compared to senescent cells (25-34 PD) cultured under high oxygen conditions (14,827 +/- 1173 bp). There was a significant increase (P < 0.05) in chromosomal abnormalities with continual cell division under both high and low oxygen environments, however, fibroblasts displayed a significant reduction (P < 0.001) in chromosomal abnormalities at low oxygen tensions compared to those under 20% oxygen. These apparent protective effects on telomere shortening, delayed senescence and reduced chromosomal aberrations may be attributed to the up-regulation of telomerase activity observed for fibroblasts cultured under low oxygen. These results are consistent with the idea that a critically short telomere length may not be the sole trigger of replicative senescence, but may be regulated by the integrity of telomere structure itself and/or the amount of oxidative DNA damage in the cell.
人们普遍认为,端粒缩短作为一种细胞分裂计数机制,当超过设定的临界长度时,会向细胞发出进入复制性衰老的信号。在本研究中,我们证明,只需将细胞培养环境中的氧气含量降低10倍(从20%降至2%),就能将胎牛成纤维细胞的复制寿命延长至少5倍(从30天延长至150天)。尽管低氧环境下的成纤维细胞端粒磨损速率(P>0.05)比高氧环境下的成纤维细胞略慢(分别为171 bp/PD和182 bp/PD),但在低氧条件下延长了复制能力的传代后期成纤维细胞(>50 PD)与在高氧条件下培养的衰老细胞(25 - 34 PD)相比,端粒长度显著缩短(P<0.05)(分别为11,135±467 bp和14,827±1173 bp)。在高氧和低氧环境下,随着细胞持续分裂,染色体异常均显著增加(P<0.05),然而,与20%氧气环境下的成纤维细胞相比,低氧环境下的成纤维细胞染色体异常显著减少(P<0.001)。这些对端粒缩短、延缓衰老和减少染色体畸变的明显保护作用,可能归因于在低氧条件下培养的成纤维细胞端粒酶活性上调。这些结果与以下观点一致:端粒长度临界缩短可能不是复制性衰老的唯一触发因素,而是可能受端粒结构本身的完整性和/或细胞内氧化性DNA损伤量的调节。