Suppr超能文献

在培养的大鼠小胶质细胞中会发生渐进性端粒缩短,但星形胶质细胞中不会。

Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes.

作者信息

Flanary Barry E, Streit Wolfgang J

机构信息

Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida 32610-0244, USA.

出版信息

Glia. 2004 Jan 1;45(1):75-88. doi: 10.1002/glia.10301.

Abstract

Normal somatic cells have a finite replicative capacity. With each cell division, telomeres shorten progressively until they reach a critical length, at which point the cells enter replicative senescence. Some cells maintain their telomeres by the action of the telomerase enzyme. Glia, particularly microglia, are the only adult cell types in the central nervous system (CNS) that exhibit a significant mitotic potential, and are thus susceptible to telomere shortening. In this study, we show that telomere shortening accompanied by low to moderate telomerase activity, and ultimately senescence, occurs in rat microglia in vitro. When microglia are stimulated to divide with the mitogen granulocyte macrophage-colony stimulating factor (GM-CSF), longer telomeres are allowed to shorten, while shorter telomeres are lengthened. Telomerase activity is nearly 3-fold higher in GM-CSF-stimulated microglia initially, relative to unstimulated controls, and then declines to levels below those seen in controls before increasing again. Telomere attrition is also more rapid when microglia are grown in culture dishes of increasing size. Fluorescence in situ hybridization (FISH) analysis indicates that a nearly 3-fold variation in both inter- and intra-chromosomal telomere length exists in microglia. In contrast to microglia, cultured astrocytes exhibit a cyclical pattern of telomere lengthening and shortening over time, corresponding to a similar cycle of higher and lower telomerase activity. When astrocytes are passaged, mean telomere length increases initially from passage 1-2, remaining constant until passage 5, while the shortest telomeres are continually lengthened. In conclusion, the telomere shortening evident in microglia is accompanied by their progression to senescence by 32 days in vitro. In contrast, astrocytes, perhaps due to greater telomerase activity, have longer life spans and may be passaged repeatedly before entering senescence. Our findings provide an impetus to investigate the possibility that microglial telomere shortening may occur in vivo.

摘要

正常体细胞具有有限的复制能力。随着每次细胞分裂,端粒会逐渐缩短,直至达到临界长度,此时细胞进入复制性衰老。一些细胞通过端粒酶的作用维持其端粒长度。神经胶质细胞,尤其是小胶质细胞,是中枢神经系统(CNS)中唯一具有显著有丝分裂潜能的成年细胞类型,因此容易发生端粒缩短。在本研究中,我们表明,在体外培养的大鼠小胶质细胞中会发生端粒缩短,并伴有低至中等水平的端粒酶活性,最终导致细胞衰老。当用促有丝分裂剂粒细胞巨噬细胞集落刺激因子(GM-CSF)刺激小胶质细胞分裂时,较长的端粒会缩短,而较短的端粒则会延长。相对于未刺激的对照组,GM-CSF刺激的小胶质细胞最初的端粒酶活性高出近3倍,然后下降至低于对照组的水平,之后又再次升高。当小胶质细胞在尺寸不断增大的培养皿中生长时,端粒损耗也更快。荧光原位杂交(FISH)分析表明,小胶质细胞的染色体间和染色体内端粒长度存在近3倍的差异。与小胶质细胞不同,培养的星形胶质细胞随着时间的推移呈现出端粒延长和缩短的周期性模式,这与端粒酶活性的高低循环相对应。当星形胶质细胞传代时,平均端粒长度最初从第1代到第2代会增加,直到第5代保持恒定,而最短的端粒则持续延长。总之,小胶质细胞中明显的端粒缩短伴随着它们在体外32天内进入衰老状态。相比之下,星形胶质细胞可能由于端粒酶活性较高,具有更长的寿命,并且在进入衰老之前可能会反复传代。我们的研究结果促使人们去探究小胶质细胞端粒缩短是否可能在体内发生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验