Hammarström Leif, Styring Stenbjörn
Department of Photochemistry and Molecular Science, Uppsala University, PO Box 523, 751 20 Uppsala, Sweden.
Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1283-91; discussion 1291. doi: 10.1098/rstb.2007.2225.
Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET.
在人工光合作用的背景下,分子组装体中的光诱导电荷分离已得到广泛研究。在电子和能量转移的基本理解以及通过多步电子转移稳定电荷分离方面已取得重要进展。在瑞典人工光合作用联盟中,我们基于天然酶光系统II和铁氢化酶的原理开展工作。这种仿生研究中的一个重要主题是耦合电子转移反应,而到目前为止该反应仅受到很少关注。(i)每个吸收的光子仅导致单电子水平的电荷分离,而催化水分解和制氢是多电子过程;因此需要控制分子组件上的累积电子转移。(ii)在潜在催化剂上进行水分解和质子还原必然需要管理质子的释放和/或吸收。这远非只是一个化学计量要求,而是通过质子耦合电子转移(PCET)来控制电子转移过程。(iii)需要在光敏剂和催化剂之间建立氧化还原活性连接以矫正累积电子转移反应,并且这通常将是PCET的起点。