Suppr超能文献

人工光合作用中的耦合电子转移

Coupled electron transfers in artificial photosynthesis.

作者信息

Hammarström Leif, Styring Stenbjörn

机构信息

Department of Photochemistry and Molecular Science, Uppsala University, PO Box 523, 751 20 Uppsala, Sweden.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1283-91; discussion 1291. doi: 10.1098/rstb.2007.2225.

Abstract

Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET.

摘要

在人工光合作用的背景下,分子组装体中的光诱导电荷分离已得到广泛研究。在电子和能量转移的基本理解以及通过多步电子转移稳定电荷分离方面已取得重要进展。在瑞典人工光合作用联盟中,我们基于天然酶光系统II和铁氢化酶的原理开展工作。这种仿生研究中的一个重要主题是耦合电子转移反应,而到目前为止该反应仅受到很少关注。(i)每个吸收的光子仅导致单电子水平的电荷分离,而催化水分解和制氢是多电子过程;因此需要控制分子组件上的累积电子转移。(ii)在潜在催化剂上进行水分解和质子还原必然需要管理质子的释放和/或吸收。这远非只是一个化学计量要求,而是通过质子耦合电子转移(PCET)来控制电子转移过程。(iii)需要在光敏剂和催化剂之间建立氧化还原活性连接以矫正累积电子转移反应,并且这通常将是PCET的起点。

相似文献

1
Coupled electron transfers in artificial photosynthesis.人工光合作用中的耦合电子转移
Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1283-91; discussion 1291. doi: 10.1098/rstb.2007.2225.
5
[NiFeSe]-hydrogenase chemistry.[NiFeSe]-氢化酶化学。
Acc Chem Res. 2015 Nov 17;48(11):2858-65. doi: 10.1021/acs.accounts.5b00326. Epub 2015 Oct 21.

引用本文的文献

5
Direct observation of light-driven, concerted electron-proton transfer.光驱动协同电子-质子转移的直接观测
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11106-11109. doi: 10.1073/pnas.1611496113. Epub 2016 Sep 22.
10
Revealing how nature uses sunlight to split water. Introduction.揭示自然如何利用阳光分解水。引言。
Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1125-8. doi: 10.1098/rstb.2007.2227.

本文引用的文献

8
Primary charge separation in Photosystem II.光系统II中的初级电荷分离。
Photosynth Res. 2000;63(3):195-208. doi: 10.1023/A:1006468024245.
9
Chemical approaches to artificial photosynthesis. 2.人工光合作用的化学方法。2.
Inorg Chem. 2005 Oct 3;44(20):6802-27. doi: 10.1021/ic050904r.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验