Soetbeer Janne, Dongare Prateek, Hammarström Leif
Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, SE-751 20 , Uppsala , Sweden . Email:
Chem Sci. 2016 Jul 1;7(7):4607-4612. doi: 10.1039/c6sc00597g. Epub 2016 Apr 1.
Proton-coupled electron transfer (PCET) from tyrosine and other phenol derivatives in water is an important elementary reaction in chemistry and biology. We examined PCET between a series of phenol derivatives and photogenerated [Ru(bpy)] in low pH (≤4) water using the laser flash-quench technique. From an analysis of the kinetic data using a Marcus-type free energy relationship, we propose that our model system follows a stepwise electron transfer-proton transfer (ETPT) pathway with a pH independent rate constant at low pH in water. This is in contrast to the concerted or proton-first (PTET) mechanisms that often dominate at higher pH and/or with buffers as primary proton acceptors. The stepwise mechanism remains competitive despite a significant change in the p and redox potential of the phenols which leads to a span of rate constants from 1 × 10 to 2 × 10 M s. These results support our previous studies which revealed separate mechanistic regions for PCET reactions and also assigned phenol oxidation by [Ru(bpy)] at low pH to a stepwise PCET mechanism.
水中酪氨酸及其他酚类衍生物的质子耦合电子转移(PCET)是化学和生物学中一种重要的基元反应。我们使用激光闪光猝灭技术,研究了一系列酚类衍生物与光生[Ru(bpy)]在低pH(≤4)水中的PCET。通过使用Marcus型自由能关系对动力学数据进行分析,我们提出,在低pH的水中,我们的模型体系遵循逐步电子转移-质子转移(ETPT)途径,其速率常数与pH无关。这与在较高pH和/或使用缓冲剂作为主要质子受体时通常占主导的协同或质子优先(PTET)机制形成对比。尽管酚类的pKa和氧化还原电位发生了显著变化,导致速率常数范围为1×10⁶至2×10⁹ M⁻¹ s⁻¹,但逐步机制仍然具有竞争力。这些结果支持了我们之前的研究,该研究揭示了PCET反应的不同机理区域,并且还将低pH下[Ru(bpy)]对酚的氧化归因于逐步PCET机制。