Müller Werner E G, Boreiko Alexandra, Wang Xiaohong, Krasko Anatoli, Geurtsen Werner, Custódio Márcio Reis, Winkler Thomas, Lukić-Bilela Lada, Link Thorben, Schröder Heinz C
Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
Calcif Tissue Int. 2007 Nov;81(5):382-93. doi: 10.1007/s00223-007-9075-4. Epub 2007 Oct 24.
In a previous study (Schröder et al., J Biomed Mater Res B Appl Biomater 75:387-392, 2005) we demonstrated that human SaOS-2 cells, when cultivated on bio-silica matrices, respond with an increased hydroxyapatite deposition. In the present contribution we investigate if silica-based components (Na-silicate, tetraethyl orthosilicate [TEOS], silica-nanoparticles) (1) change the extent of biomineralization in vitro (SaOS-2 cells) and (2) cause an alteration of the expression of the genes amelogenin, ameloblastin, and enamelin, which are characteristic for an early stage of osteogenesis. We demonstrate that the viability of SaOS-2 cells was not affected by the silica-based components. If Na-silicate or TEOS was added together with ss-glycerophosphate, an organic phosphate donor, a significant increase in biomineralization was measured. Finally, expression levels of the amelogenin, ameloblastin, and enamelin genes were determined in SaOS-2 cells during exposure to the silica-based components. After exposure for 2 days, expression levels of amelogenin and enamelin strongly increased in response to the silica-based components, while no significant change was seen for ameloblastin. In contrast, exposure of SaOS-2 cells to ss-glycerophosphate resulted in increased expression of all three genes. We conclude that the levels of the structural molecules of the enamel matrix, amelogenin and enamelin, increase in the presence of silica-based components and substantially contribute to the extent of hydroxyapatite crystallite formation. These results demonstrate that silica-based components augment hydroxyapatite deposition in vitro and suggest that enzymatically synthesized bio-silica (via silicatein) might be a promising route for tooth reconstruction in vivo.
在之前的一项研究中(施罗德等人,《生物医学材料研究杂志B:应用生物材料》75:387 - 392,2005年),我们证明了人类SaOS - 2细胞在生物二氧化硅基质上培养时,羟基磷灰石沉积会增加。在本研究中,我们调查基于二氧化硅的成分(硅酸钠、原硅酸四乙酯[TEOS]、二氧化硅纳米颗粒)是否(1)改变体外(SaOS - 2细胞)生物矿化的程度,以及(2)导致成釉蛋白、成釉细胞蛋白和釉原蛋白基因表达的改变,这些基因是骨生成早期阶段的特征。我们证明基于二氧化硅的成分不会影响SaOS - 2细胞的活力。如果将硅酸钠或TEOS与有机磷酸盐供体β -甘油磷酸一起添加,生物矿化会显著增加。最后,在暴露于基于二氧化硅的成分期间,测定了SaOS - 2细胞中成釉蛋白、成釉细胞蛋白和釉原蛋白基因的表达水平。暴露2天后,成釉蛋白和釉原蛋白的表达水平因基于二氧化硅的成分而强烈增加,而成釉细胞蛋白未见明显变化。相比之下,将SaOS - 2细胞暴露于β -甘油磷酸会导致所有三个基因的表达增加。我们得出结论,在存在基于二氧化硅的成分时,釉基质结构分子成釉蛋白和釉原蛋白的水平会增加,并对羟基磷灰石微晶形成的程度有显著贡献。这些结果表明基于二氧化硅的成分在体外增强了羟基磷灰石沉积,并表明酶促合成的生物二氧化硅(通过硅酸酶)可能是体内牙齿重建的一条有前景的途径。