Suppr超能文献

评估尿液分析参数以预测尿路感染。

Evaluation of urinalysis parameters to predict urinary-tract infection.

作者信息

dos Santos Juliana Conrad, Weber Liliana Portal, Perez Leandro Reus Rodrigues

机构信息

Laboratory of Clinical Analysis, Faculty of Pharmacy, Caxias do Sul University, Porto Alegre, RS, Brazil.

出版信息

Braz J Infect Dis. 2007 Oct;11(5):479-81. doi: 10.1590/s1413-86702007000500008.

Abstract

We evaluated the performance of automated-flow cytometry, urinalysis dipsticks and microscopic urine sediment analysis as predictors of urinary tract infection. Urine cultures were used as a reference method for comparison. Six-hundred-seventy-five urine samples from hospitalized and not hospitalized patients attended at Hospital Mãe de Deus, Porto Alegre, in south Brazil, were included in the study. Among the individual measures analyzed, intense bacteriuria in the microscopic analysis of urinary sediment gave an accuracy of 92.9%. A combination between intense bacteriuria (microscopic analysis) and >20 leukocytes per microL of urine (flow cytometry) gave a higher accuracy (97.3%). We conclude that though it is laborious, microscopic urinalysis is a good analytical tool. Taken together with flow cytometry and dipsticks, we obtained a clinically-acceptable prediction of urinary-tract infection.

摘要

我们评估了自动流式细胞术、尿液分析试纸条和显微镜下尿沉渣分析作为尿路感染预测指标的性能。以尿培养作为参考方法进行比较。本研究纳入了巴西南部阿雷格里港圣母医院收治的675份来自住院和非住院患者的尿液样本。在所分析的各项指标中,尿沉渣显微镜检查中的重度菌尿准确率为92.9%。重度菌尿(显微镜检查)与每微升尿液中白细胞>20个(流式细胞术)相结合,准确率更高(97.3%)。我们得出结论,尽管显微镜下尿分析费力,但它是一种很好的分析工具。将其与流式细胞术和试纸条结合使用,我们获得了临床上可接受的尿路感染预测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验