de Vries Meinou H, Monaghan Padraic, Knecht Stefan, Zwitserlood Pienie
Department of Neurology, University of Münster, A. Schweitzerstrasse 33, D-48129 Münster, Germany.
Cognition. 2008 May;107(2):763-74. doi: 10.1016/j.cognition.2007.09.002. Epub 2007 Oct 25.
Embedded hierarchical structures, such as "the rat the cat ate was brown", constitute a core generative property of a natural language theory. Several recent studies have reported learning of hierarchical embeddings in artificial grammar learning (AGL) tasks, and described the functional specificity of Broca's area for processing such structures. In two experiments, we investigated whether alternative strategies can explain the learning success in these studies. We trained participants on hierarchical sequences, and found no evidence for the learning of hierarchical embeddings in test situations identical to those from other studies in the literature. Instead, participants appeared to solve the task by exploiting surface distinctions between legal and illegal sequences, and applying strategies such as counting or repetition detection. We suggest alternative interpretations for the observed activation of Broca's area, in terms of the application of calculation rules or of a differential role of working memory. We claim that the learnability of hierarchical embeddings in AGL tasks remains to be demonstrated.
嵌入式层次结构,例如“那只猫吃的老鼠是棕色的”,构成了自然语言理论的核心生成属性。最近的几项研究报告了在人工语法学习(AGL)任务中对层次嵌入的学习,并描述了布罗卡区处理此类结构的功能特异性。在两项实验中,我们研究了其他策略是否可以解释这些研究中的学习成功。我们让参与者训练层次序列,并且在与文献中其他研究相同的测试情境中,没有发现学习层次嵌入的证据。相反,参与者似乎通过利用合法序列和非法序列之间的表面差异,并应用计数或重复检测等策略来解决任务。我们根据计算规则的应用或工作记忆的不同作用,对观察到的布罗卡区激活提出了其他解释。我们认为,AGL任务中层次嵌入的可学习性仍有待证明。