Alvarez María Noel, Peluffo Gonzalo, Folkes Lisa, Wardman Peter, Radi Rafael
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
Free Radic Biol Med. 2007 Dec 1;43(11):1523-33. doi: 10.1016/j.freeradbiomed.2007.08.002. Epub 2007 Aug 15.
Carbonate radicals (CO3-) can be formed biologically by the reaction of OH with bicarbonate, the decomposition of the peroxynitrite-carbon dioxide adduct (ONOOCO2-), and enzymatic activities, i.e., peroxidase activity of CuZnSOD and xanthine oxidase turnover in the presence of bicarbonate. It has been reported that the spin-trap DMPO reacts with CO3(-) to yield transient species to yield finally the DMPO-OH spin adduct. In this study, the kinetics of reaction of CO3(-) with DMPO were studied by pulse radiolysis, yielding a second-order rate constant of 2.5 x 10(6) M(-1) s(-1). A Fenton system, composed of Fe(II)-DTPA plus H2O2, generated OH that was trapped by DMPO; the presence of 50-500 mM bicarbonate, expected to convert OH to CO3(-), markedly inhibited DMPO-OH formation. This was demonstrated to be due mainly to a fast reaction of CO3(-) with FeII-DTPA (k=6.1 x 10(8) M(-1) s(-1)), supported by kinetic analysis. Generation of CO3(-) by the Fenton system was further proved by analysis of tyrosine oxidation products: the presence of bicarbonate caused a dose-dependent inhibition of 3,4-dihydroxiphenylalanine with a concomitant increase of 3,3'-dityrosine yields, and the presence of DMPO inhibited tyrosine oxidation, in agreement with the rate constants with OH or CO3(-). Similarly, the formation of CO3(-) by CuZnSOD/H(2)O(2)/bicarbonate and peroxynitrite-carbon dioxide was supported by DMPO hydroxylation and kinetic competition data. Finally, the reaction of CO3(-) with DMPO to yield DMPO-OH was shown in peroxynitrite-forming macrophages. In conclusion, CO3(-) reacts quite rapidly with DMPO and may contribute to DMPO-OH yields in chemical and cellular systems; in turn, the extent of oxidation of other target molecules (such as tyrosine) by CO3(-) will be sensitive to the presence of DMPO.
碳酸根自由基(CO3-)可通过以下方式生物合成:OH与碳酸氢盐反应、过氧亚硝酸根-二氧化碳加合物(ONOOCO2-)分解以及酶促活性,即在碳酸氢盐存在下CuZnSOD的过氧化物酶活性和黄嘌呤氧化酶的周转。据报道,自旋捕获剂DMPO与CO3(-)反应生成瞬态物种,最终生成DMPO-OH自旋加合物。在本研究中,通过脉冲辐解研究了CO3(-)与DMPO的反应动力学,得到二级速率常数为2.5×10(6) M(-1) s(-1)。由Fe(II)-DTPA加H2O2组成的芬顿体系产生的OH被DMPO捕获;50-500 mM碳酸氢盐的存在预期会将OH转化为CO3(-),这显著抑制了DMPO-OH的形成。动力学分析表明,这主要是由于CO3(-)与FeII-DTPA的快速反应(k=6.1×10(8) M(-1) s(-1))。通过对酪氨酸氧化产物的分析进一步证明了芬顿体系产生了CO3(-):碳酸氢盐的存在导致3,4-二羟基苯丙氨酸呈剂量依赖性抑制,同时3,3'-二酪氨酸产量增加,DMPO的存在抑制了酪氨酸氧化,这与OH或CO3(-)的速率常数一致。同样,DMPO羟基化和动力学竞争数据支持了CuZnSOD/H(2)O(2)/碳酸氢盐和过氧亚硝酸根-二氧化碳生成CO3(-)。最后,在形成过氧亚硝酸根的巨噬细胞中显示了CO3(-)与DMPO反应生成DMPO-OH。总之,CO3(-)与DMPO反应相当迅速,可能在化学和细胞系统中对DMPO-OH的产量有贡献;反过来,CO3(-)对其他靶分子(如酪氨酸)的氧化程度将对DMPO的存在敏感。