Hasson Uri, Skipper Jeremy I, Wilde Michael J, Nusbaum Howard C, Small Steven L
Department of Neurology, The University of Chicago, Chicago, IL 60637, USA.
Neuroimage. 2008 Jan 15;39(2):693-706. doi: 10.1016/j.neuroimage.2007.09.021. Epub 2007 Sep 21.
The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data.
神经影像研究所涉及的研究问题日益复杂,这对计算基础设施提出了巨大的要求。这些基础设施需要以能够实现快速且精确的数据分析的方式来支持海量数据的管理,以允许开展合作研究,并以安全且管理开销最小的方式实现这些目标。在此,我们提出一种方法,该方法克服了当前数据分析和数据共享中的许多限制。此方法基于开源数据库管理系统,这些系统将支持复杂数据查询作为数据分析、灵活数据共享以及使用集群计算和网格计算资源进行并行和分布式数据处理的一个组成部分。与基于二进制或文本文件存储的当前框架相比,我们评估了这些方法的优势。然后,我们详细描述了这样一个系统的实现,并具体说明了它是如何用于对功能磁共振成像(fMRI)时间序列数据进行复杂分析的。