Kronenberg Florian
Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Schöpfstr 41, A-6020, Innsbruck, Austria.
Exp Gerontol. 2008 Jan;43(1):39-43. doi: 10.1016/j.exger.2007.09.005. Epub 2007 Sep 29.
Recent technological developments allow to genotype several hundreds of thousands of genetic variants in a single person in one step. This enables genome-wide association studies (GWAS) by genotyping a large number of patients with diseases of interest and controls at reasonable costs. Compared to a hypothesis-driven candidate gene approach the hypothesis-free GWAS can identify new susceptibility genes without making any a priori biological assumptions. They permit to identify genes involved in pathways which until now were unknown to be involved in a certain phenotype. GWAS are therefore a new and very powerful tool to identify genetic contributors to aging-related phenotypes. This paper provides a short overview about design and methods of GWAS and reviews recent advances in the identification of susceptibility genes for type 2 diabetes mellitus, atherosclerosis and cancer using GWAS.
最近的技术发展使得在一步操作中就能对一个人的数十万种基因变异进行基因分型成为可能。这使得通过以合理成本对大量患有感兴趣疾病的患者和对照进行基因分型来开展全基因组关联研究(GWAS)成为现实。与基于假设驱动的候选基因方法相比,无假设的GWAS能够在不做任何先验生物学假设的情况下识别新的易感基因。它们能够识别参与此前未知与某种表型相关的通路的基因。因此,GWAS是一种用于识别与衰老相关表型的遗传因素的全新且非常强大的工具。本文简要概述了GWAS的设计和方法,并综述了利用GWAS在2型糖尿病、动脉粥样硬化和癌症易感基因识别方面的最新进展。