Kniss Joe, Hunt Warren, Potter Kristin, Sen Pradeep
Advanced Graphics Lab, University of New Mexico, USA.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1424-31. doi: 10.1109/TVCG.2007.70572.
Topology has been an important tool for analyzing scalar data and flow fields in visualization. In this work, we analyze the topology of multivariate image and volume data sets with discontinuities in order to create an efficient, raster-based representation we call IStar. Specifically, the topology information is used to create a dual structure that contains nodes and connectivity information for every segmentable region in the original data set. This graph structure, along with a sampled representation of the segmented data set, is embedded into a standard raster image which can then be substantially downsampled and compressed. During rendering, the raster image is upsampled and the dual graph is used to reconstruct the original function. Unlike traditional raster approaches, our representation can preserve sharp discontinuities at any level of magnification, much like scalable vector graphics. However, because our representation is raster-based, it is well suited to the real-time rendering pipeline. We demonstrate this by reconstructing our data sets on graphics hardware at real-time rates.
拓扑学一直是可视化中分析标量数据和流场的重要工具。在这项工作中,我们分析具有不连续性的多元图像和体数据集的拓扑结构,以创建一种高效的、基于光栅的表示形式,我们称之为IStar。具体而言,拓扑信息用于创建一种对偶结构,该结构包含原始数据集中每个可分割区域的节点和连通性信息。这种图结构与分割数据集的采样表示一起,被嵌入到一个标准光栅图像中,然后该图像可以大幅下采样和压缩。在渲染过程中,光栅图像被上采样,对偶图用于重建原始函数。与传统光栅方法不同,我们的表示形式可以在任何放大级别保留清晰的不连续性,很像可缩放矢量图形。然而,由于我们的表示形式基于光栅,它非常适合实时渲染管道。我们通过在图形硬件上以实时速率重建我们的数据集来证明这一点。