Meyer Miriah, Whitaker Ross, Kirby Robert M, Ledergerber Christian, Pfister Hanspeter
Initiative in Innovative Computing, Harvard University.
IEEE Trans Vis Comput Graph. 2008 Nov-Dec;14(6):1539-46. doi: 10.1109/TVCG.2008.154.
Methods that faithfully and robustly capture the geometry of complex material interfaces in labeled volume data are important for generating realistic and accurate visualizations and simulations of real-world objects. The generation of such multimaterial models from measured data poses two unique challenges: first, the surfaces must be well-sampled with regular, efficient tessellations that are consistent across material boundaries; and second, the resulting meshes must respect the nonmanifold geometry of the multimaterial interfaces. This paper proposes a strategy for sampling and meshing multimaterial volumes using dynamic particle systems, including a novel, differentiable representation of the material junctions that allows the particle system to explicitly sample corners, edges, and surfaces of material intersections. The distributions of particles are controlled by fundamental sampling constraints, allowing Delaunay-based meshing algorithms to reliably extract watertight meshes of consistently high-quality.
在标记体数据中忠实地、稳健地捕捉复杂材料界面几何形状的方法,对于生成真实世界物体的逼真且准确的可视化和模拟非常重要。从测量数据生成此类多材料模型面临两个独特挑战:第一,表面必须用规则、高效的三角剖分进行良好采样,且在材料边界处保持一致;第二,生成的网格必须尊重多材料界面的非流形几何形状。本文提出一种使用动态粒子系统对多材料体进行采样和网格化的策略,包括一种新颖的、可微的材料交界处表示方法,该方法允许粒子系统明确地对材料相交处的角、边和表面进行采样。粒子的分布由基本采样约束控制,使得基于德劳内的网格化算法能够可靠地提取始终高质量的封闭网格。