Marcos J Víctor, Hornero Roberto, Alvarez Daniel, del Campo Félix, López Miguel, Zamarrón Carlos
Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, Camino del cementerio, s/n, 47011 Valladolid, Spain.
Med Biol Eng Comput. 2008 Apr;46(4):323-32. doi: 10.1007/s11517-007-0280-0. Epub 2007 Oct 30.
The aim of this study is to assess the ability of radial basis function (RBF) classifiers as an assistant tool for the diagnosis of the obstructive sleep apnoea syndrome (OSAS). A total of 187 subjects suspected of suffering from OSAS were available for our research. The initial population was divided into training, validation and test sets for deriving and testing our neural classifiers. We used nonlinear features from nocturnal oxygen saturation (SaO(2)) to perform patients' classification. We evaluated three different RBF construction techniques based on the following algorithms: k-means (KM), fuzzy c-means (FCM) and orthogonal least squares (OLS). A diagnostic accuracy of 86.1, 84.7 and 85.5% was provided by the networks developed with KM, FCM and OLS, respectively. The three proposed networks achieved an area under the receiver operating characteristic (ROC) curve over 0.90. Our results showed that a useful non-invasive method could be applied to diagnose OSAS from nonlinear features of SaO(2) with RBF classifiers.
本研究的目的是评估径向基函数(RBF)分类器作为诊断阻塞性睡眠呼吸暂停综合征(OSAS)辅助工具的能力。共有187名疑似患有OSAS的受试者可供我们研究。初始人群被分为训练集、验证集和测试集,用于推导和测试我们的神经分类器。我们使用夜间血氧饱和度(SaO₂)的非线性特征对患者进行分类。我们基于以下算法评估了三种不同的RBF构建技术:k均值(KM)、模糊c均值(FCM)和正交最小二乘法(OLS)。分别由KM、FCM和OLS开发的网络提供的诊断准确率为86.1%、84.7%和85.5%。所提出的三个网络在受试者工作特征(ROC)曲线下的面积超过0.90。我们的结果表明,一种有用的非侵入性方法可用于通过RBF分类器从SaO₂的非线性特征诊断OSAS。