Suppr超能文献

稳健性与可进化性:一个已解决的悖论。

Robustness and evolvability: a paradox resolved.

作者信息

Wagner Andreas

机构信息

Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.

出版信息

Proc Biol Sci. 2008 Jan 7;275(1630):91-100. doi: 10.1098/rspb.2007.1137.

Abstract

Understanding the relationship between robustness and evolvability is key to understand how living things can withstand mutations, while producing ample variation that leads to evolutionary innovations. Mutational robustness and evolvability, a system's ability to produce heritable variation, harbour a paradoxical tension. On one hand, high robustness implies low production of heritable phenotypic variation. On the other hand, both experimental and computational analyses of neutral networks indicate that robustness enhances evolvability. I here resolve this tension using RNA genotypes and their secondary structure phenotypes as a study system. To resolve the tension, one must distinguish between robustness of a genotype and a phenotype. I confirm that genotype (sequence) robustness and evolvability share an antagonistic relationship. In stark contrast, phenotype (structure) robustness promotes structure evolvability. A consequence is that finite populations of sequences with a robust phenotype can access large amounts of phenotypic variation while spreading through a neutral network. Population-level processes and phenotypes rather than individual sequences are key to understand the relationship between robustness and evolvability. My observations may apply to other genetic systems where many connected genotypes produce the same phenotypes.

摘要

理解稳健性与进化能力之间的关系是理解生物如何抵御突变,同时产生大量导致进化创新的变异的关键。突变稳健性和进化能力(一个系统产生可遗传变异的能力)存在着自相矛盾的紧张关系。一方面,高稳健性意味着可遗传表型变异的低产生。另一方面,对中性网络的实验和计算分析均表明稳健性增强了进化能力。我在此以RNA基因型及其二级结构表型作为研究系统来解决这种紧张关系。为了解决这种紧张关系,必须区分基因型的稳健性和表型的稳健性。我证实基因型(序列)稳健性和进化能力存在拮抗关系。与之形成鲜明对比的是,表型(结构)稳健性促进结构进化能力。其结果是,具有稳健表型的有限序列群体在通过中性网络传播时能够获得大量表型变异。群体水平的过程和表型而非单个序列是理解稳健性与进化能力之间关系的关键。我的观察结果可能适用于其他许多相关基因型产生相同表型的遗传系统。

相似文献

1
Robustness and evolvability: a paradox resolved.
Proc Biol Sci. 2008 Jan 7;275(1630):91-100. doi: 10.1098/rspb.2007.1137.
2
Revisiting robustness and evolvability: evolution in weighted genotype spaces.
PLoS One. 2014 Nov 12;9(11):e112792. doi: 10.1371/journal.pone.0112792. eCollection 2014.
3
Evolvability and robustness: A paradox restored.
J Theor Biol. 2017 Oct 7;430:78-85. doi: 10.1016/j.jtbi.2017.07.004. Epub 2017 Jul 11.
4
The topology of robustness and evolvability in evolutionary systems with genotype-phenotype map.
J Theor Biol. 2014 Sep 7;356:144-62. doi: 10.1016/j.jtbi.2014.04.014. Epub 2014 Apr 30.
5
Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
PLoS One. 2016 Apr 15;11(4):e0153295. doi: 10.1371/journal.pone.0153295. eCollection 2016.
6
Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability.
PLoS Comput Biol. 2016 Mar 3;12(3):e1004773. doi: 10.1371/journal.pcbi.1004773. eCollection 2016 Mar.
7
8
Developmental nonlinearity drives phenotypic robustness.
Nat Commun. 2017 Dec 6;8(1):1970. doi: 10.1038/s41467-017-02037-7.
10
The effect of genetic robustness on evolvability in digital organisms.
BMC Evol Biol. 2008 Oct 14;8:284. doi: 10.1186/1471-2148-8-284.

引用本文的文献

1
From valleys to peaks: The role of evolvability in fitness landscape navigation.
PNAS Nexus. 2025 Jul 18;4(8):pgaf221. doi: 10.1093/pnasnexus/pgaf221. eCollection 2025 Aug.
3
The adaptive state determines the impact of mutations on evolving populations.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2427070122. doi: 10.1073/pnas.2427070122. Epub 2025 Jun 26.
5
Soft Modes as a Predictive Framework for Low-Dimensional Biological Systems Across Scales.
Annu Rev Biophys. 2025 May;54(1):401-426. doi: 10.1146/annurev-biophys-081624-030543. Epub 2025 Feb 19.
7
Optimal network sizes for most robust Turing patterns.
Sci Rep. 2025 Jan 23;15(1):2948. doi: 10.1038/s41598-025-86854-7.
8
Neural differentiation in perspective: mitochondria as early programmers.
Front Neurosci. 2025 Jan 8;18:1529855. doi: 10.3389/fnins.2024.1529855. eCollection 2024.
9
The Role of Pleiotropy and Epistasis on Evolvability and Robustness in a Two-Peak Fitness Landscape.
Biology (Basel). 2024 Dec 2;13(12):1003. doi: 10.3390/biology13121003.

本文引用的文献

1
Innovation and robustness in complex regulatory gene networks.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13591-6. doi: 10.1073/pnas.0705396104. Epub 2007 Aug 9.
2
New structural variation in evolutionary searches of RNA neutral networks.
Biosystems. 2007 Sep-Oct;90(2):475-85. doi: 10.1016/j.biosystems.2006.11.007. Epub 2006 Dec 2.
3
Robustness can evolve gradually in complex regulatory gene networks with varying topology.
PLoS Comput Biol. 2007 Feb 2;3(2):e15. doi: 10.1371/journal.pcbi.0030015.
4
Evolvability.
Curr Biol. 2006 Oct 10;16(19):R831-4. doi: 10.1016/j.cub.2006.08.080.
5
In silico predicted robustness of viroids RNA secondary structures. I. The effect of single mutations.
Mol Biol Evol. 2006 Jul;23(7):1427-36. doi: 10.1093/molbev/msl005. Epub 2006 May 5.
6
Direct evolution of genetic robustness in microRNA.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6593-8. doi: 10.1073/pnas.0510600103. Epub 2006 Apr 11.
7
Protein stability promotes evolvability.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74. doi: 10.1073/pnas.0510098103. Epub 2006 Mar 31.
8
The 'evolvability' of promiscuous protein functions.
Nat Genet. 2005 Jan;37(1):73-6. doi: 10.1038/ng1482. Epub 2004 Nov 28.
9
The robustness of naturally and artificially selected nucleic acid secondary structures.
J Mol Evol. 2004 Jun;58(6):681-91. doi: 10.1007/s00239-004-2590-2.
10
Evolvability is a selectable trait.
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11531-6. doi: 10.1073/pnas.0404656101. Epub 2004 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验