Suppr超能文献

跨不同环境的低维基因型-适应性映射表明了一种适应性的限制函数模型。

Low-dimensional genotype-fitness mapping across divergent environments suggests a limiting functions model of fitness.

作者信息

Ghosh Olivia M, Kinsler Grant, Good Benjamin H, Petrov Dmitri A

机构信息

Department of Physics, Stanford University, Stanford, CA 94305, USA.

Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

bioRxiv. 2025 May 31:2025.04.05.647371. doi: 10.1101/2025.04.05.647371.

Abstract

A central goal in evolutionary biology is to be able to predict the effect of a genetic mutation on fitness. This is a major challenge because fitness depends both on phenotypic changes due to the mutation, and how these phenotypes map onto fitness in a particular environment. Genotype, phenotype, and environment spaces are extremely large and complex, rendering bottom-up prediction difficult. Here we show, using a large collection of adaptive yeast mutants, that fitness across a set of lab environments can be well-captured by low-dimensional linear models of abstract genotype-phenotype-fitness maps. We find that these maps are low-dimensional not only in the environment where the adaptive mutants evolved, but also in divergent environments. We further find that the genotype-phenotype-fitness spaces implied by these maps overlap only partially across environments. We argue that these patterns are consistent with a "limiting functions" model of fitness, whereby only a small number of limiting functions can be modified to affect fitness in any given environment. The pleiotropic side-effects on non-limiting functions are effectively hidden from natural selection locally, but can be revealed globally. These results combine to emphasize the importance of environmental context in genotype-phenotype-fitness mapping, and have implications for the predictability and trajectory of evolution in complex environments.

摘要

进化生物学的一个核心目标是能够预测基因突变对适应性的影响。这是一项重大挑战,因为适应性既取决于突变引起的表型变化,也取决于这些表型在特定环境中如何映射到适应性上。基因型、表型和环境空间极其庞大且复杂,使得自下而上的预测变得困难。在这里,我们使用大量适应性酵母突变体表明,通过抽象基因型 - 表型 - 适应性图谱的低维线性模型,可以很好地捕捉一组实验室环境中的适应性。我们发现,这些图谱不仅在适应性突变体进化的环境中是低维的,在不同环境中也是如此。我们进一步发现,这些图谱所隐含的基因型 - 表型 - 适应性空间在不同环境中仅部分重叠。我们认为,这些模式与适应性的“限制函数”模型一致,即只有少数限制函数可以被修改以影响任何给定环境中的适应性。对非限制函数的多效性副作用在局部有效地对自然选择隐藏,但在全局上可以显现出来。这些结果共同强调了环境背景在基因型 - 表型 - 适应性映射中的重要性,并对复杂环境中进化的可预测性和轨迹具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf69/12128839/403e653baea5/nihpp-2025.04.05.647371v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验