Chanda Pritam, Costa Eduardo, Hu Jie, Sukumar Shravan, Van Hemert John, Walia Rasna
Corteva Agriscience™, Indianapolis, IN 46268, USA.
Computer and Information Science, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
Entropy (Basel). 2020 Jun 6;22(6):627. doi: 10.3390/e22060627.
"A Mathematical Theory of Communication" was published in 1948 by Claude Shannon to address the problems in the field of data compression and communication over (noisy) communication channels. Since then, the concepts and ideas developed in Shannon's work have formed the basis of information theory, a cornerstone of statistical learning and inference, and has been playing a key role in disciplines such as physics and thermodynamics, probability and statistics, computational sciences and biological sciences. In this article we review the basic information theory based concepts and describe their key applications in multiple major areas of research in computational biology-gene expression and transcriptomics, alignment-free sequence comparison, sequencing and error correction, genome-wide disease-gene association mapping, metabolic networks and metabolomics, and protein sequence, structure and interaction analysis.
《通信的数学理论》由克劳德·香农于1948年发表,旨在解决数据压缩和(有噪声的)通信信道上的通信领域中的问题。从那时起,香农著作中所发展的概念和思想构成了信息论的基础,信息论是统计学习与推理的基石,并且在物理学和热力学、概率与统计学、计算科学以及生物科学等学科中一直发挥着关键作用。在本文中,我们回顾基于信息论的基本概念,并描述它们在计算生物学多个主要研究领域中的关键应用——基因表达与转录组学、无比对序列比较、测序与纠错、全基因组疾病-基因关联图谱绘制、代谢网络与代谢组学,以及蛋白质序列、结构与相互作用分析。