Pahr Dieter H, Zysset Philippe K
Institute of Lightweight Design and Structural Biomechanics, Gusshausstrasse 27-29, 1040 Vienna, Austria.
Biomech Model Mechanobiol. 2008 Dec;7(6):463-76. doi: 10.1007/s10237-007-0109-7. Epub 2007 Oct 31.
High-resolution finite element models of trabecular bone can be used to study trabecular structure-function relationships, elasticity, multiaxial strength, and tissue remodelling in more detail than experiments. Beside effects of the model size, scan/analysis resolution, segmentation process, etc., the type of the applied boundary conditions (BCs) have a strong influence on the predicted elastic properties. Appropriate BCs have to be applied on hexahedral digital finite element models in order to obtain effective elastic properties. Homogeneous displacement BCs as proposed by Van Rietbergen et al. (J Biomech 29(12):1653-1657, 1996) lead to "apparent" rather than to "effective" elastic properties. This study provides some answers concerning such differences by comparing various BC types (uniform displacement, mixed BCs, periodic BCs), different volume element definitions (original and mirrored models), and several bone volume fractions (BVTV ranging from 6.5 to 37.6%). First, the mixed BCs formulated by Hazanov (Arch Appl Mech 68(6):385-394, 1998) are theoretically extended to shear loading of a porous media. Second, six human bone samples are analyzed, their orthotropic Young's moduli, shear moduli, and Poisson's ratios computed and compared. It is found that the proposed mixed BCs give exactly the same effective elastic properties as periodic BCs if a periodic and orthotropic micro-structured material is used and thus denoted as "periodicity compatible" mixed uniform BCs (PMUBCs). As bone samples were shown to be nearly orthotropic for volume element side lengths > or =5 mm the proposed mixed BCs turn out to be the best choice because they give again essentially the same overall elastic properties as periodic BCs. For bone samples of smaller dimensions ( < 5 mm) with a strong anisotropy (beyond orthotropy) uniform displacement BCs remain applicable but they can significantly overestimate the effective stiffness.
与实验相比,高分辨率的小梁骨有限元模型可用于更详细地研究小梁结构 - 功能关系、弹性、多轴强度和组织重塑。除了模型尺寸、扫描/分析分辨率、分割过程等因素的影响外,所应用的边界条件(BCs)类型对预测的弹性特性有很大影响。为了获得有效的弹性特性,必须在六面体数字有限元模型上应用适当的BCs。Van Rietbergen等人(《生物力学杂志》29(12):1653 - 1657, 1996)提出的均匀位移BCs会导致“表观”而非“有效”的弹性特性。本研究通过比较各种BC类型(均匀位移、混合BCs、周期性BCs)、不同的体积单元定义(原始模型和镜像模型)以及几种骨体积分数(骨体积与总体积之比范围从6.5%到37.6%),提供了一些关于此类差异的答案。首先,Hazanov(《应用力学文献》68(6):385 - 394, 1998)提出的混合BCs在理论上扩展到多孔介质的剪切加载。其次,对六个人类骨样本进行分析,计算并比较它们的正交各向异性杨氏模量、剪切模量和泊松比。研究发现,如果使用周期性和正交各向异性微结构材料,所提出的混合BCs给出的有效弹性特性与周期性BCs完全相同,因此被称为“周期性兼容”混合均匀BCs(PMUBCs)。由于当体积单元边长≥5mm时骨样本显示出近乎正交各向异性,所提出的混合BCs被证明是最佳选择,因为它们给出的总体弹性特性与周期性BCs基本相同。对于尺寸较小(<5mm)且具有强各向异性(超出正交各向异性)的骨样本,均匀位移BCs仍然适用,但它们可能会显著高估有效刚度。