Pahr Dieter H, Zysset Philippe K
Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Vienna, Austria.
J Biomech. 2009 Mar 11;42(4):455-62. doi: 10.1016/j.jbiomech.2008.11.028. Epub 2009 Jan 19.
Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
连续体有限元(FE)模型是用于确定骨骼和骨植入系统生物力学特性的标准工具。本研究以微观有限元(muFE)作为金标准,研究一种增强连续体FE模型的准确性。增强连续体模型考虑了松质骨形态(密度和结构)以及解剖学上正确的皮质骨壳。椎体切片模型是使用文献[Pahr和Zysset,2008b。从高分辨率CT数据到有限元模型:集成模块化框架的开发。生物力学与生物医学工程中的计算机方法,即将发表。]中提出的算法从高分辨率CT图像中提取的。生成了三种不同的模型:提出的基于密度-结构增强的特定个体皮质骨模型和两种经典的仅各向同性密度模型,一种有皮质骨壳的显式建模,另一种没有。通过使用从所研究椎体的松质骨中心裁剪的60个立方体微观有限元模型的弹性张量,将所使用的形态-弹性关系的材料属性误差最小化。在这些有限元模型中使用了两种不同的边界条件——运动学边界条件[Van Rietbergen等人,1995。一种使用微观力学有限元模型确定松质骨弹性特性和载荷的新方法。生物力学杂志28(1),69 - 81]和混合边界条件[Pahr,D.H.,Zysset,P.K.,2008a。边界条件对松质骨计算表观弹性特性的影响。机械生物学中的生物力学与建模7,463 - 476。]。去除终板后,对所研究的椎体施加压缩和前后剪切载荷。通过单独加载松质骨中心(去除壳)和皮质骨壳,更详细地研究了各个误差源。发现仅皮质骨模型在从体素转换为平滑描述时需要校正壳厚度。分别使用运动学和混合边界条件进行材料校准时,仅松质骨中心给出的响应过刚和过柔。对整个椎体刚度的比较表明,用运动学边界条件校准的正交各向异性松质骨材料与微观有限元最相符。总体而言,所提出的基于表面增强均匀化的有限元模型在结构上比仅密度模型更准确。