Suppr超能文献

慢性网络兴奋性过高对海马体树突生长的影响。

Effects of chronic network hyperexcitability on the growth of hippocampal dendrites.

作者信息

Nishimura Masataka, Owens James, Swann John W

机构信息

The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Neurobiol Dis. 2008 Feb;29(2):267-77. doi: 10.1016/j.nbd.2007.08.018. Epub 2007 Sep 12.

Abstract

Experiments reported here were motivated by studies in both human epilepsy and animal models in which stunted dendritic arbors are observed. Our goal was to determine if chronic network hyperexcitability alters dendritic growth. Experiments were conducted in hippocampal slice cultures obtained from infant mice that express the fluorescent protein YFP in CA1 hippocampal pyramidal cells. Results showed that 4 days of GABAa receptor blockade produced a 40% decrease in basilar dendritic length. When dendritic growth was followed over this 4-day interval, dendrites in untreated slices doubled in length, however dendrites in bicuculline treated cultures failed to grow. These effects were suppressed by APV - suggesting a dependence on NMDA receptor activation. Activation of the transcription factor CREB was also decreased by chronic network hyperexcitability - pointing to possible molecular events underlying the observed suppression of growth. Taken together, our results suggest that chronic hippocampal network hyperexcitability limits dendritic growth.

摘要

此处报道的实验受到了人类癫痫和动物模型研究的启发,在这些研究中观察到了发育不良的树突分支。我们的目标是确定慢性网络过度兴奋是否会改变树突生长。实验在从幼鼠获得的海马切片培养物中进行,这些幼鼠的CA1海马锥体细胞中表达荧光蛋白YFP。结果显示,4天的GABAa受体阻断使基底树突长度减少了40%。当在这4天的间隔内跟踪树突生长时,未处理切片中的树突长度增加了一倍,然而荷包牡丹碱处理培养物中的树突未能生长。这些效应被APV抑制——表明依赖于NMDA受体激活。慢性网络过度兴奋也会降低转录因子CREB的激活——指出了观察到的生长抑制背后可能的分子事件。综上所述,我们的结果表明慢性海马网络过度兴奋会限制树突生长。

相似文献

1
Effects of chronic network hyperexcitability on the growth of hippocampal dendrites.
Neurobiol Dis. 2008 Feb;29(2):267-77. doi: 10.1016/j.nbd.2007.08.018. Epub 2007 Sep 12.
2
Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons.
Eur J Neurosci. 2003 Jun;17(12):2529-39. doi: 10.1046/j.1460-9568.2003.02694.x.
4
BDNF enhances dendritic Ca2+ signals evoked by coincident EPSPs and back-propagating action potentials in CA1 pyramidal neurons.
Brain Res. 2006 Aug 9;1104(1):45-54. doi: 10.1016/j.brainres.2006.05.067. Epub 2006 Jun 22.
5
Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat.
Brain Res Bull. 2008 Dec 16;77(6):374-81. doi: 10.1016/j.brainresbull.2008.09.004. Epub 2008 Oct 11.
6
7
NMDA receptor-mediated depolarizing after-potentials in the basal dendrites of CA1 pyramidal neurons.
Neurosci Res. 2004 Mar;48(3):325-33. doi: 10.1016/j.neures.2003.11.011.
8
Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy.
J Neurosci. 1998 Oct 15;18(20):8356-68. doi: 10.1523/JNEUROSCI.18-20-08356.1998.
9
Early development of neuronal activity in the primate hippocampus in utero.
J Neurosci. 2001 Dec 15;21(24):9770-81. doi: 10.1523/JNEUROSCI.21-24-09770.2001.
10

引用本文的文献

1
Unraveling Dravet Syndrome: Exploring the complex effects of sodium channel mutations on neuronal networks.
Sci Prog. 2024 Jan-Mar;107(1):368504231225076. doi: 10.1177/00368504231225076.
2
Optogenetic stimulation shapes dendritic trees of infragranular cortical pyramidal cells.
Front Cell Neurosci. 2023 Aug 1;17:1212483. doi: 10.3389/fncel.2023.1212483. eCollection 2023.
3
GluN2B but Not GluN2A for Basal Dendritic Growth of Cortical Pyramidal Neurons.
Front Neuroanat. 2020 Nov 13;14:571351. doi: 10.3389/fnana.2020.571351. eCollection 2020.
5
The Impact of Electrographic Seizures on Developing Hippocampal Dendrites Is Calcineurin Dependent.
eNeuro. 2017 Apr 28;4(2). doi: 10.1523/ENEURO.0014-17.2017. eCollection 2017 Mar-Apr.
8
The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory.
Brain Res Bull. 2014 Apr;103:39-48. doi: 10.1016/j.brainresbull.2013.10.004. Epub 2013 Oct 15.
9
Rapid hippocampal network adaptation to recurring synchronous activity--a role for calcineurin.
Eur J Neurosci. 2013 Oct;38(8):3115-27. doi: 10.1111/ejn.12315. Epub 2013 Jul 24.
10
Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage.
PLoS One. 2013;8(3):e57808. doi: 10.1371/journal.pone.0057808. Epub 2013 Mar 11.

本文引用的文献

1
The impact of chronic network hyperexcitability on developing glutamatergic synapses.
Eur J Neurosci. 2007 Aug;26(4):975-91. doi: 10.1111/j.1460-9568.2007.05739.x.
4
Temporal regulation of the expression locus of homeostatic plasticity.
J Neurophysiol. 2006 Oct;96(4):2127-33. doi: 10.1152/jn.00107.2006. Epub 2006 Jun 7.
5
Dendritic pathology in mental retardation: from molecular genetics to neurobiology.
Genes Brain Behav. 2006;5 Suppl 2:48-60. doi: 10.1111/j.1601-183X.2006.00224.x.
6
Neuropathology of Rett syndrome.
J Child Neurol. 2005 Sep;20(9):747-53. doi: 10.1177/08830738050200090901.
7
Regulation of hippocampal synapse remodeling by epileptiform activity.
Mol Cell Neurosci. 2005 Aug;29(4):494-506. doi: 10.1016/j.mcn.2005.04.007.
8
Gonadal hormone modulation of dendrites in the mammalian CNS.
J Neurobiol. 2005 Jul;64(1):34-46. doi: 10.1002/neu.20143.
9
Calcium signaling and the control of dendritic development.
Neuron. 2005 May 5;46(3):401-5. doi: 10.1016/j.neuron.2005.04.022.
10
Cortical rewiring and information storage.
Nature. 2004 Oct 14;431(7010):782-8. doi: 10.1038/nature03012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验