Suppr超能文献

雷帕霉素逆转癫痫持续状态诱导的记忆障碍和树突损伤。

Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage.

机构信息

Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.

出版信息

PLoS One. 2013;8(3):e57808. doi: 10.1371/journal.pone.0057808. Epub 2013 Mar 11.

Abstract

Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE.

摘要

认知障碍是人类和动物模型中长时间持续癫痫发作(癫痫持续状态;SE)的主要后遗症。虽然它通常与树突损伤有关,但潜在的机制仍不清楚。哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)途径在 SE 后被过度激活。该途径调节学习和记忆,并与神经元、树突和神经胶质的调节有关。因此,在本研究中,我们检验了以下假设:SE 诱导的 mTORC1 过度激活是 SE 后出现认知缺陷和树突病理的潜在机制。我们研究了雷帕霉素(一种 mTORC1 抑制剂)对匹鲁卡品诱导的 SE 相关早期海马依赖性空间学习和记忆缺陷的影响。雷帕霉素治疗的 SE 大鼠在两项空间记忆任务(水迷宫和新物体识别测试)中的表现明显优于对照组。在分子水平上,我们发现 SE 诱导的 mTORC1 信号增加定位于神经元和小胶质细胞。雷帕霉素降低了 SE 诱导的 mTOR 激活,并减弱了小胶质细胞增生,后者主要定位于 CA1 区。这些发现与 SE 诱导的树突状 Map2 和离子通道水平降低以及 CA1 区树突分支和棘突密度改善相吻合,而这些改善是在雷帕霉素治疗后出现的。总之,这些发现表明 mTORC1 过度活跃导致与 SE 相关的早期海马依赖性空间学习和记忆缺陷以及树突功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f24/3594232/eb1144d794d6/pone.0057808.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验