Suppr超能文献

ZAP-70酪氨酸激酶和AGC激酶的αC-β4环区域内的类似调控位点。

Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases.

作者信息

Kannan Natarajan, Neuwald Andrew F, Taylor Susan S

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0654, USA.

出版信息

Biochim Biophys Acta. 2008 Jan;1784(1):27-32. doi: 10.1016/j.bbapap.2007.09.007. Epub 2007 Sep 29.

Abstract

The precise positioning of the flexible C-helix in the catalytic core is a critical step in the activation of most protein kinases. Consequently, the alphaC-beta4 loop, which anchors the C-helix to the catalytic core, is highly conserved and mediates key structural interactions that serve as a hinge for C-helix movement. While these hinge interactions are conserved across diverse eukaryotic protein kinase structures, some families such as AGC kinases diverge from the canonical hinge interactions. This divergence was recently proposed to facilitate an alternative mode of regulation wherein a conserved C-terminal tail interacts with the alphaC-beta4 loop to position the C-helix. Here we show how interactions between the alphaC-beta4 loop and the N-terminal SH2 domain of ZAP-70 tyrosine kinase are mechanistically and functionally analogous to interactions between the alphaC-beta4 loop and the C-terminal tail of AGC kinases. Such cis regulation of protein kinase activity may be a feature of other eukaryotic protein kinase families as well.

摘要

柔性C螺旋在催化核心中的精确定位是大多数蛋白激酶激活过程中的关键步骤。因此,将C螺旋锚定到催化核心的αC-β4环高度保守,并介导关键的结构相互作用,这些相互作用作为C螺旋运动的铰链。虽然这些铰链相互作用在不同的真核蛋白激酶结构中是保守的,但一些家族,如AGC激酶,与典型的铰链相互作用有所不同。最近有人提出,这种差异有助于一种替代的调节模式,即保守的C末端尾巴与αC-β4环相互作用以定位C螺旋。在这里,我们展示了ZAP-70酪氨酸激酶的αC-β4环与N末端SH2结构域之间的相互作用在机制和功能上如何类似于AGC激酶的αC-β4环与C末端尾巴之间的相互作用。蛋白激酶活性的这种顺式调节也可能是其他真核蛋白激酶家族的一个特征。

相似文献

1
Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases.
Biochim Biophys Acta. 2008 Jan;1784(1):27-32. doi: 10.1016/j.bbapap.2007.09.007. Epub 2007 Sep 29.
2
Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease.
IUBMB Life. 2020 Jun;72(6):1189-1202. doi: 10.1002/iub.2253. Epub 2020 Feb 26.
3
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1272-7. doi: 10.1073/pnas.0610251104. Epub 2007 Jan 16.
5
Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker.
Mol Cell Biol. 2013 Jun;33(11):2188-201. doi: 10.1128/MCB.01637-12. Epub 2013 Mar 25.
8
Integration of signaling in the kinome: Architecture and regulation of the αC Helix.
Biochim Biophys Acta. 2015 Oct;1854(10 Pt B):1567-74. doi: 10.1016/j.bbapap.2015.04.007. Epub 2015 Apr 17.
10
The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin beta cytoplasmic domains.
J Biol Chem. 2002 Oct 18;277(42):39401-8. doi: 10.1074/jbc.M207657200. Epub 2002 Aug 8.

引用本文的文献

3
Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease.
IUBMB Life. 2020 Jun;72(6):1189-1202. doi: 10.1002/iub.2253. Epub 2020 Feb 26.
4
Non-degradative Ubiquitination of Protein Kinases.
PLoS Comput Biol. 2016 Jun 2;12(6):e1004898. doi: 10.1371/journal.pcbi.1004898. eCollection 2016 Jun.
5
Dynamics-Driven Allostery in Protein Kinases.
Trends Biochem Sci. 2015 Nov;40(11):628-647. doi: 10.1016/j.tibs.2015.09.002. Epub 2015 Oct 21.
7
ProKinO: a unified resource for mining the cancer kinome.
Hum Mutat. 2015 Feb;36(2):175-86. doi: 10.1002/humu.22726.
8
Dynamic architecture of a protein kinase.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4623-31. doi: 10.1073/pnas.1418402111. Epub 2014 Oct 15.
9
Deciphering the structural basis of eukaryotic protein kinase regulation.
PLoS Biol. 2013 Oct;11(10):e1001680. doi: 10.1371/journal.pbio.1001680. Epub 2013 Oct 15.
10
αC helix as a switch in the conformational transition of Src/CDK-like kinase domains.
J Phys Chem B. 2012 Apr 19;116(15):4465-75. doi: 10.1021/jp301628r. Epub 2012 Apr 5.

本文引用的文献

1
The CHAIN program: forging evolutionary links to underlying mechanisms.
Trends Biochem Sci. 2007 Nov;32(11):487-93. doi: 10.1016/j.tibs.2007.08.009. Epub 2007 Oct 24.
2
Structural basis for the inhibition of tyrosine kinase activity of ZAP-70.
Cell. 2007 May 18;129(4):735-46. doi: 10.1016/j.cell.2007.03.039.
3
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1272-7. doi: 10.1073/pnas.0610251104. Epub 2007 Jan 16.
4
Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component?
J Mol Biol. 2005 Sep 2;351(5):956-72. doi: 10.1016/j.jmb.2005.06.057.
6
PDK1, the master regulator of AGC kinase signal transduction.
Semin Cell Dev Biol. 2004 Apr;15(2):161-70. doi: 10.1016/j.semcdb.2003.12.022.
9
The protein kinase complement of the human genome.
Science. 2002 Dec 6;298(5600):1912-34. doi: 10.1126/science.1075762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验