Suppr超能文献

αC-β4 环在蛋白激酶结构、功能、进化和疾病中的新兴作用。

Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease.

机构信息

Institute of Bioinformatics, University of Georgia, Athens, Georgia.

Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia.

出版信息

IUBMB Life. 2020 Jun;72(6):1189-1202. doi: 10.1002/iub.2253. Epub 2020 Feb 26.

Abstract

The faithful propagation of cellular signals in most organisms relies on the coordinated functions of a large family of protein kinases that share a conserved catalytic domain. The catalytic domain is a dynamic scaffold that undergoes large conformational changes upon activation. Most of these conformational changes, such as movement of the regulatory αC-helix from an "out" to "in" conformation, hinge on a conserved, but understudied, loop termed the αC-β4 loop, which mediates conserved interactions to tether flexible structural elements to the kinase core. We previously showed that the αC-β4 loop is a unique feature of eukaryotic protein kinases. Here, we review the emerging roles of this loop in kinase structure, function, regulation, and diseases. Through a kinome-wide analysis, we define the boundaries of the loop for the first time and show that sequence and structural variation in the loop correlate with conformational and regulatory variation. Many recurrent disease mutations map to the αC-β4 loop and contribute to drug resistance and abnormal kinase activation by relieving key auto-inhibitory interactions associated with αC-helix and inter-lobe movement. The αC-β4 loop is a hotspot for post-translational modifications, protein-protein interaction, and Hsp90 mediated folding. Our kinome-wide analysis provides insights for hypothesis-driven characterization of understudied kinases and the development of allosteric protein kinase inhibitors.

摘要

在大多数生物体中,细胞信号的准确传递依赖于一大类蛋白激酶的协调功能,这些激酶具有保守的催化结构域。催化结构域是一个动态支架,在激活时会发生大的构象变化。大多数构象变化,如调节αC-螺旋从“外”到“内”的构象的移动,都依赖于一个保守但研究不足的环,称为αC-β4 环,它介导保守的相互作用,将柔性结构元件固定在激酶核心上。我们之前表明,αC-β4 环是真核蛋白激酶的一个独特特征。在这里,我们综述了该环在激酶结构、功能、调节和疾病中的新兴作用。通过对激酶组的全面分析,我们首次定义了该环的边界,并表明环中的序列和结构变化与构象和调节变化相关。许多反复出现的疾病突变都映射到αC-β4 环,通过解除与αC-螺旋和叶间运动相关的关键自动抑制相互作用,导致药物耐药性和异常激酶激活。αC-β4 环是翻译后修饰、蛋白质-蛋白质相互作用和 Hsp90 介导折叠的热点。我们的激酶组全面分析为假设驱动的未充分研究的激酶的特征描述和变构蛋白激酶抑制剂的开发提供了思路。

相似文献

1
Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease.
IUBMB Life. 2020 Jun;72(6):1189-1202. doi: 10.1002/iub.2253. Epub 2020 Feb 26.
2
Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases.
Biochim Biophys Acta. 2008 Jan;1784(1):27-32. doi: 10.1016/j.bbapap.2007.09.007. Epub 2007 Sep 29.
3
Integration of signaling in the kinome: Architecture and regulation of the αC Helix.
Biochim Biophys Acta. 2015 Oct;1854(10 Pt B):1567-74. doi: 10.1016/j.bbapap.2015.04.007. Epub 2015 Apr 17.
7
BlockMaster: partitioning protein kinase structures using normal-mode analysis.
J Phys Chem A. 2009 Jul 2;113(26):7528-34. doi: 10.1021/jp900885w.
8
Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism.
J Biol Chem. 2008 Jan 18;283(3):1588-1596. doi: 10.1074/jbc.M708116200. Epub 2007 Nov 26.
9
Exploration and Comparison of the Geometrical and Physicochemical Properties of an αC Allosteric Pocket in the Structural Kinome.
J Chem Inf Model. 2018 May 29;58(5):1094-1103. doi: 10.1021/acs.jcim.7b00735. Epub 2018 May 4.
10
KinView: a visual comparative sequence analysis tool for integrated kinome research.
Mol Biosyst. 2016 Nov 15;12(12):3651-3665. doi: 10.1039/c6mb00466k.

引用本文的文献

1
A structure-based tool to interpret the significance of kinase mutations in clinical next generation sequencing in cancer.
Front Oncol. 2025 Aug 4;15:1599389. doi: 10.3389/fonc.2025.1599389. eCollection 2025.
2
CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2.
EMBO J. 2024 Nov;43(22):5381-5420. doi: 10.1038/s44318-024-00240-z. Epub 2024 Sep 26.
6
Survivin Mediates Mitotic Onset in HeLa Cells Through Activation of the Cdk1-Cdc25B Axis.
Res Sq. 2024 Feb 28:rs.3.rs-3949429. doi: 10.21203/rs.3.rs-3949429/v1.
8
An update on evolutionary, structural, and functional studies of receptor-like kinases in plants.
Front Plant Sci. 2024 Jan 31;15:1305599. doi: 10.3389/fpls.2024.1305599. eCollection 2024.

本文引用的文献

1
The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region.
J Biol Chem. 2019 Sep 13;294(37):13545-13559. doi: 10.1074/jbc.RA119.009725. Epub 2019 Jul 24.
2
Tracing the origin and evolution of pseudokinases across the tree of life.
Sci Signal. 2019 Apr 23;12(578):eaav3810. doi: 10.1126/scisignal.aav3810.
3
COSMIC: the Catalogue Of Somatic Mutations In Cancer.
Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947. doi: 10.1093/nar/gky1015.
4
Coral: Clear and Customizable Visualization of Human Kinome Data.
Cell Syst. 2018 Sep 26;7(3):347-350.e1. doi: 10.1016/j.cels.2018.07.001. Epub 2018 Aug 29.
5
Altered conformational landscape and dimerization dependency underpins the activation of EGFR by C-4 loop insertion mutations.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8162-E8171. doi: 10.1073/pnas.1803152115. Epub 2018 Aug 13.
6
X-ray Structures and Feasibility Assessment of CLK2 Inhibitors for Phelan-McDermid Syndrome.
ChemMedChem. 2018 Sep 19;13(18):1997-2007. doi: 10.1002/cmdc.201800344. Epub 2018 Aug 16.
7
Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype.
PLoS One. 2018 May 3;13(5):e0196761. doi: 10.1371/journal.pone.0196761. eCollection 2018.
9
MEK drives BRAF activation through allosteric control of KSR proteins.
Nature. 2018 Feb 22;554(7693):549-553. doi: 10.1038/nature25478. Epub 2018 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验