O'Boyle Brady, Yeung Wayland, Lu Jason D, Katiyar Samiksha, Yaron-Barir Tomer M, Johnson Jared L, Cantley Lewis C, Kannan Natarajan
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
Sci Signal. 2025 May 6;18(885):eadt8686. doi: 10.1126/scisignal.adt8686.
Bacterial serine-threonine kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity and are evolutionarily related to the druggable eukaryotic STKs. A deeper understanding of how bacterial STKs differ from their eukaryotic counterparts and how they have evolved to regulate diverse bacterial signaling functions is crucial for advancing the discovery and development of new antibiotic therapies. Here, we classified more than 300,000 bacterial STK sequences from the NCBI RefSeq nonredundant and UniProt protein databases into 35 canonical and seven pseudokinase families on the basis of the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified features distinguishing bacterial STKs from eukaryotic STKs, including an arginine residue in a regulatory helix (C helix) that dynamically couples the ATP- and substrate-binding lobes of the kinase domain. Biochemical and peptide library screens demonstrated that evolutionarily constrained residues contributed to substrate specificity and kinase activation in the kinase PknB. Together, these findings open previously unidentified avenues for investigating bacterial STK functions in cellular signaling and for developing selective bacterial STK inhibitors.
细菌丝氨酸 - 苏氨酸激酶(STK)调节与细胞生长、毒力和致病性相关的多种细胞过程,并且在进化上与可成药的真核STK相关。深入了解细菌STK与真核对应物的差异以及它们如何进化以调节多种细菌信号功能,对于推进新型抗生素疗法的发现和开发至关重要。在这里,我们根据保守催化结构域和侧翼调节结构域中的进化限制模式,将来自NCBI RefSeq非冗余和UniProt蛋白质数据库的30多万个细菌STK序列分类为35个典型家族和7个假激酶家族。通过统计比较,我们确定了区分细菌STK与真核STK的特征,包括调节螺旋(C螺旋)中的一个精氨酸残基,该残基动态连接激酶结构域的ATP结合和底物结合叶。生化和肽库筛选表明,进化上受限的残基有助于激酶PknB中的底物特异性和激酶激活。总之,这些发现为研究细菌STK在细胞信号传导中的功能以及开发选择性细菌STK抑制剂开辟了以前未被发现的途径。