Suppr超能文献

一种用于时空疾病映射的自回归方法。

An autoregressive approach to spatio-temporal disease mapping.

作者信息

Martínez-Beneito M A, López-Quilez A, Botella-Rocamora P

机构信息

Area de Epidemiología, Dirección General de Salud Pública, Generalitat Valenciana, Valencia, Spain.

出版信息

Stat Med. 2008 Jul 10;27(15):2874-89. doi: 10.1002/sim.3103.

Abstract

Disease mapping has been a very active research field during recent years. Nevertheless, time trends in risks have been ignored in most of these studies, yet they can provide information with a very high epidemiological value. Lately, several spatio-temporal models have been proposed, either based on a parametric description of time trends, on independent risk estimates for every period, or on the definition of the joint covariance matrix for all the periods as a Kronecker product of matrices. The following paper offers an autoregressive approach to spatio-temporal disease mapping by fusing ideas from autoregressive time series in order to link information in time and by spatial modelling to link information in space. Our proposal can be easily implemented in Bayesian simulation software packages, for example WinBUGS. As a result, risk estimates are obtained for every region related to those in their neighbours and to those in the same region in adjacent periods.

摘要

近年来,疾病制图一直是一个非常活跃的研究领域。然而,这些研究大多忽略了风险的时间趋势,而它们能提供具有很高流行病学价值的信息。最近,已经提出了几种时空模型,有的基于时间趋势的参数描述,有的基于每个时期的独立风险估计,还有的基于将所有时期的联合协方差矩阵定义为矩阵的克罗内克积。下面的论文提出了一种自回归方法用于时空疾病制图,它融合了自回归时间序列的思想以在时间上链接信息,并通过空间建模在空间上链接信息。我们的提议可以很容易地在贝叶斯模拟软件包(例如WinBUGS)中实现。结果,可以获得与相邻时期其邻居区域和同一区域相关的每个区域的风险估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验