Suppr超能文献

一种在泊松回归中针对两种死亡原因之间的诊断错误分类进行调整的贝叶斯方法。

A Bayesian approach to adjust for diagnostic misclassification between two mortality causes in Poisson regression.

作者信息

Stamey James D, Young Dean M, Seaman John W

机构信息

Department of Statistical Science, Baylor University, Waco, TX 76798-7140, USA.

出版信息

Stat Med. 2008 Jun 15;27(13):2440-52. doi: 10.1002/sim.3134.

Abstract

Response misclassification of counted data biases and understates the uncertainty of parameter estimators in Poisson regression models. To correct these problems, researchers have devised classical procedures that rely on asymptotic distribution results and supplemental validation data in order to estimate unknown misclassification parameters. We derive a new Bayesian Poisson regression procedure that accounts and corrects for misclassification for a count variable with two categories. Under the Bayesian paradigm, one can use validation data, expert opinion, or a combination of these two approaches to correct for the consequences of misclassification. The Bayesian procedure proposed here yields an operationally effective way to correct and account for misclassification effects in Poisson count regression models. We demonstrate the performance of the model in a simulation study. Additionally, we analyze two real-data examples and compare our new Bayesian inference method that adjusts for misclassification with a similar analysis that ignores misclassification.

摘要

计数数据的响应误分类会导致偏差,并低估泊松回归模型中参数估计量的不确定性。为了纠正这些问题,研究人员设计了经典程序,这些程序依赖渐近分布结果和补充验证数据来估计未知的误分类参数。我们推导了一种新的贝叶斯泊松回归程序,该程序考虑并校正了具有两类的计数变量的误分类。在贝叶斯范式下,可以使用验证数据、专家意见或这两种方法的组合来校正误分类的影响。这里提出的贝叶斯程序产生了一种在操作上有效的方法,用于校正和考虑泊松计数回归模型中的误分类效应。我们在模拟研究中展示了该模型的性能。此外,我们分析了两个实际数据示例,并将我们校正误分类的新贝叶斯推断方法与忽略误分类的类似分析进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验