Suppr超能文献

Cobalamin potentiates vinblastine cytotoxicity through downregulation of mdr-1 gene expression in HepG2 cells.

作者信息

Marguerite Véronique, Beri-Dexheimer Myléne, Ortiou Sandrine, Guéant Jean-Louis, Merten Marc

机构信息

Laboratoire de Pathologie Cellulaire et Moleculaire en Nutrition, Faculté de Médecine, University Henry Poincaré, Vandoeuvre-les-Nancy, Cedex, France.

出版信息

Cell Physiol Biochem. 2007;20(6):967-76. doi: 10.1159/000110457.

Abstract

BACKGROUND

P-glycoprotein (Pgp), produced by multidrug resistance-1 gene (mdr-1), is a main mechanism developed by cancer cells to guard against anti-cancer drugs. Alterations of DNA methylation of the mdr-1 gene promoter are known to be linked to mdr-1 gene expression and are probably related to intracellular S-adenosyl-methionine. We here used HepG2 cells to determine the role of the methionine cycle (through the use of the Methionine-Synthase (MS) cofactor, cobalamin) on mdr-1 gene expression.

METHODS

Semiquantitative RT-PCR of mdr-1 gene, cellular retention of rhodamine-123, and vinblastine cytotoxicity were carried out on cells cultivated with and without cobalamin. Methylation status of the mdr-1 gene promoter was determined by methylation-specific PCR.

RESULTS

Addition of cobalamin to the cells led to an increase in MS activity, to a significant decrease in mdr-1 gene expression which is correlated to an increase in retention of the Pgp substrate Rhodamine 123. Furthermore, cobalamin potentiated cell sensitivity to vinblastine to the same range as that of the Pgp blocker verapamil and prevented methotrexate-induced up-regulation of mdr-1 gene expression. However, no modification in methylation of the mdr-1 gene promoter was observed.

CONCLUSION

Cobalamin downregulates mdr-1 gene expression, as well as Pgp expression and function, and significantly increases cytotoxicity of vinblastine. The identification of this novel way of diminishing cellular resistance to the chemotherapeutic agent vinblastine holds promises of leading to better treatments for cancer patients.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验