Suppr超能文献

二-2-吡啶基甲酮4,4-二甲基-3-硫代半卡巴腙(Dp44mT)通过一种涉及劫持溶酶体P-糖蛋白(Pgp)的新机制克服多药耐药性。

Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp).

作者信息

Jansson Patric J, Yamagishi Tetsuo, Arvind Akanksha, Seebacher Nicole, Gutierrez Elaine, Stacy Alexandra, Maleki Sanaz, Sharp Danae, Sahni Sumit, Richardson Des R

机构信息

From the Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia

From the Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.

出版信息

J Biol Chem. 2015 Apr 10;290(15):9588-603. doi: 10.1074/jbc.M114.631283. Epub 2015 Feb 26.

Abstract

Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.

摘要

多药耐药性(MDR)是癌症治疗中的一个主要障碍。超过一半的人类癌症表达多药耐药性P-糖蛋白(Pgp),这与预后不良相关。有趣的是,通过一种未知机制,一些药物在耐药肿瘤细胞中的活性比其敏感对应物更高。在此,我们研究新型抗肿瘤药物二-2-吡啶酮4,4-二甲基-3-硫代半卡巴腙(Dp44mT)如何克服多药耐药性。利用四种不同的细胞类型评估Pgp增强药物溶酶体靶向作用以克服多药耐药性的效果。为了评估Dp44mT克服耐药性的机制,细胞研究采用了Pgp抑制剂、Pgp沉默、溶酶体促渗剂、增殖测定、免疫印迹、Pgp-ATP酶活性测定、放射性标记药物摄取/流出、罗丹明123保留测定、溶酶体膜通透性评估以及DCF(2',7'-二氯荧光素)氧化还原研究。使用BALB/c裸鼠异种移植模型研究了Dp44mT在表达Pgp的多药耐药细胞与敏感细胞中的抗肿瘤活性和选择性。我们证明Dp44mT由溶酶体Pgp药物泵转运,导致Dp44mT靶向溶酶体,并在多药耐药细胞中增强细胞毒性。溶酶体Pgp和pH对于增加Dp44mT介导的溶酶体损伤以及随后在耐药细胞中的细胞毒性至关重要,已证明Dp44mT是一种Pgp底物。实际上,Pgp抑制剂、Pgp沉默或使用溶酶体促渗碱提高溶酶体pH可消除Dp44mT的Pgp依赖性溶酶体损伤和细胞毒性。在体内,相对于小鼠中不表达Pgp的肿瘤,Dp44mT有效地靶向化疗耐药的人源表达Pgp的异种移植肿瘤。这项研究突出了一种独特的二吡啶硫代半卡巴腙系列硫代半卡巴腙的新型Pgp劫持策略,该策略通过利用溶酶体Pgp转运活性来克服多药耐药性。

相似文献

引用本文的文献

10
Influence of lysosomal sequestration on multidrug resistance in cancer cells.溶酶体隔离对癌细胞多药耐药性的影响。
Cancer Drug Resist. 2019 Mar 19;2(1):31-42. doi: 10.20517/cdr.2018.23. eCollection 2019.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验