Suppr超能文献

深部灰质随年龄增长的矿化:基于磁敏感加权磁共振成像的回顾性研究

Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging.

作者信息

Harder S L, Hopp K M, Ward H, Neglio H, Gitlin J, Kido D

机构信息

Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan, Canada.

出版信息

AJNR Am J Neuroradiol. 2008 Jan;29(1):176-83. doi: 10.3174/ajnr.A0770. Epub 2007 Nov 7.

Abstract

BACKGROUND AND PURPOSE

Susceptibility-weighted imaging (SWI) is an advanced MR imaging sequence that can be implemented at high resolution. This sequence can be performed on conventional MR imaging scanners and is very sensitive to mineralization. The purpose of this study was to establish the course of mineralization in the deep gray matter with age by using SWI.

MATERIALS AND METHODS

We retrospectively reviewed susceptibility-weighted images of 134 patients (age range, 1 to 88 years). Inclusion criteria comprised a normal conventional MR imaging (T1, T2, and fluid-attenuated inversion recovery sequences). We statistically analyzed the relative signal intensities of the globus pallidus, putamen, substantia nigra, caudate nucleus, red nucleus, and thalamus for correlation with age. The putamen was graded according to a modified scale, based on previous work that described a systematic pattern of mineralization with age. Bands of hypointensity in the globus pallidus, dubbed "waves," were also evaluated.

RESULTS

We documented decreasing intensity (ie, increasing mineralization) with age in all deep gray matter areas analyzed. We confirmed the age-related posterolateral to anteromedial progression of mineralization in the putamen. Characteristic medial and lateral bands of mineralization were exhibited in the globus pallidus in all children and young adults older than 3 years. Finally, an increase in the number of "waves" present in the globus pallidus was associated with increased age by category.

CONCLUSION

This study documents the course and pattern of mineralization in the deep gray matter with age, as determined by SWI. These findings may play a role in evaluating diseased brains in the future.

摘要

背景与目的

磁敏感加权成像(SWI)是一种先进的磁共振成像序列,可实现高分辨率成像。该序列可在传统磁共振成像扫描仪上进行,对矿化非常敏感。本研究的目的是利用SWI确定深部灰质矿化随年龄增长的过程。

材料与方法

我们回顾性分析了134例患者(年龄范围为1至88岁)的磁敏感加权图像。纳入标准包括常规磁共振成像(T1、T2和液体衰减反转恢复序列)正常。我们对苍白球、壳核、黑质、尾状核、红核和丘脑的相对信号强度进行了统计学分析,以确定其与年龄的相关性。根据之前描述矿化随年龄变化的系统模式的研究,壳核按改良量表进行分级。还对苍白球中被称为“波”的低信号带进行了评估。

结果

我们记录了在所分析的所有深部灰质区域中,信号强度随年龄降低(即矿化增加)的情况。我们证实了壳核中矿化从后外侧向前内侧的年龄相关进展。在所有3岁以上的儿童和年轻人中,苍白球均呈现出特征性的内侧和外侧矿化带。最后,苍白球中“波”的数量增加与年龄类别增加相关。

结论

本研究记录了利用SWI确定的深部灰质矿化随年龄增长的过程和模式。这些发现可能在未来评估患病大脑中发挥作用。

相似文献

1
Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging.
AJNR Am J Neuroradiol. 2008 Jan;29(1):176-83. doi: 10.3174/ajnr.A0770. Epub 2007 Nov 7.
3
Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration.
Neurobiol Aging. 2010 Mar;31(3):482-93. doi: 10.1016/j.neurobiolaging.2008.04.013. Epub 2008 May 29.
5
Spatiotemporal Pattern of Gadodiamide-Related T1 Hyperintensity Increase Within the Deep Brain Nuclei.
Invest Radiol. 2018 Dec;53(12):748-754. doi: 10.1097/RLI.0000000000000502.
6
Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping.
J Magn Reson Imaging. 2016 Jul;44(1):59-71. doi: 10.1002/jmri.25130. Epub 2015 Dec 23.
7
Deep gray matter hypointensity patterns with aging in healthy adults: MR imaging at 1.5 T.
Radiology. 1991 Dec;181(3):715-9. doi: 10.1148/radiology.181.3.1947087.

引用本文的文献

1
2
An exploratory research report on brain mineralization in postoperative delirium and cognitive decline.
Eur J Neurosci. 2024 May;59(10):2646-2664. doi: 10.1111/ejn.16282. Epub 2024 Feb 21.
3
Neuroimaging abnormalities associated with immunotherapy responsiveness in Down syndrome regression disorder.
Ann Clin Transl Neurol. 2024 Apr;11(4):1034-1045. doi: 10.1002/acn3.52023. Epub 2024 Feb 20.
5
[Brain Iron Imaging in Aging and Cognitive Disorders: MRI Approaches].
Taehan Yongsang Uihakhoe Chi. 2022 May;83(3):527-537. doi: 10.3348/jksr.2022.0038. Epub 2022 May 25.
6
Parkinson's Disease Etiology: Insights and Associations with Phosphate Toxicity.
Int J Mol Sci. 2022 Jul 22;23(15):8060. doi: 10.3390/ijms23158060.
7
Clinical Implications of Focal Mineral Deposition in the Globus Pallidus on CT and Quantitative Susceptibility Mapping of MRI.
Korean J Radiol. 2022 Jul;23(7):742-751. doi: 10.3348/kjr.2022.0003. Epub 2022 May 27.
9
An Updated Overview of the Magnetic Resonance Imaging of Brain Iron in Movement Disorders.
Behav Neurol. 2022 Feb 24;2022:3972173. doi: 10.1155/2022/3972173. eCollection 2022.
10
Adapting the UK Biobank Brain Imaging Protocol and Analysis Pipeline for the C-MORE Multi-Organ Study of COVID-19 Survivors.
Front Neurol. 2021 Oct 29;12:753284. doi: 10.3389/fneur.2021.753284. eCollection 2021.

本文引用的文献

1
The vascular supply of the functional compartments of the human striatum.
Brain. 2006 Aug;129(Pt 8):2189-201. doi: 10.1093/brain/awl158. Epub 2006 Jun 30.
2
Brain ferritin iron may influence age- and gender-related risks of neurodegeneration.
Neurobiol Aging. 2007 Mar;28(3):414-23. doi: 10.1016/j.neurobiolaging.2006.02.005. Epub 2006 Mar 24.
3
Clinical applications of neuroimaging with susceptibility-weighted imaging.
J Magn Reson Imaging. 2005 Oct;22(4):439-50. doi: 10.1002/jmri.20404.
4
In situ characterization and mapping of iron compounds in Alzheimer's disease tissue.
J Alzheimers Dis. 2005 Aug;7(4):267-72. doi: 10.3233/jad-2005-7401.
5
6
Imaging iron stores in the brain using magnetic resonance imaging.
Magn Reson Imaging. 2005 Jan;23(1):1-25. doi: 10.1016/j.mri.2004.10.001.
7
Susceptibility weighted imaging (SWI).
Magn Reson Med. 2004 Sep;52(3):612-8. doi: 10.1002/mrm.20198.
8
Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions.
Ann Neurol. 2004 Jul;56(1):36-50. doi: 10.1002/ana.20123.
9
Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging.
Psychiatry Res. 2003 Nov 1;121(1):59-87. doi: 10.1016/s0165-1781(03)00202-6.
10
The effect of age on the non-haemin iron in the human brain.
J Neurochem. 1958 Oct;3(1):41-51. doi: 10.1111/j.1471-4159.1958.tb12607.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验