Suppr超能文献

OBO铸造厂:本体的协同进化以支持生物医学数据整合。

The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration.

作者信息

Smith Barry, Ashburner Michael, Rosse Cornelius, Bard Jonathan, Bug William, Ceusters Werner, Goldberg Louis J, Eilbeck Karen, Ireland Amelia, Mungall Christopher J, Leontis Neocles, Rocca-Serra Philippe, Ruttenberg Alan, Sansone Susanna-Assunta, Scheuermann Richard H, Shah Nigam, Whetzel Patricia L, Lewis Suzanna

机构信息

Department of Philosophy and New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203, USA.

出版信息

Nat Biotechnol. 2007 Nov;25(11):1251-5. doi: 10.1038/nbt1346.

Abstract

The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or 'ontologies'. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved.

摘要

当任何一种数据以能够与其他数据整合的形式存在时,其价值会得到极大提升。整合的一种方法是通过使用通用受控词汇表或“本体”对多个数据集进行注释。不幸的是,这种方法的成功导致了本体的激增,这本身就给整合带来了障碍。开放生物医学本体(OBO)联盟正在推行一种策略来克服这个问题。现有的OBO本体,包括基因本体,正在进行协调改革,并且正在基于一套不断发展的、指导本体开发的共享原则创建新的本体。其结果是一个不断扩大的本体家族,旨在实现互操作性、逻辑结构良好,并纳入对生物现实的准确表述。我们描述了这个OBO铸造计划,并为那些可能希望参与其中的人提供指导方针。

相似文献

1
2
Unintended consequences of existential quantifications in biomedical ontologies.
BMC Bioinformatics. 2011 Nov 24;12:456. doi: 10.1186/1471-2105-12-456.
3
A unified framework for biomedical terminologies and ontologies.
Stud Health Technol Inform. 2010;160(Pt 2):1050-4.
4
Survey-based naming conventions for use in OBO Foundry ontology development.
BMC Bioinformatics. 2009 Apr 27;10:125. doi: 10.1186/1471-2105-10-125.
5
A UML profile for the OBO relation ontology.
BMC Genomics. 2012;13 Suppl 5(Suppl 5):S3. doi: 10.1186/1471-2164-13-S5-S3. Epub 2012 Oct 19.
6
How orthogonal are the OBO Foundry ontologies?
J Biomed Semantics. 2011 May 17;2 Suppl 2(Suppl 2):S2. doi: 10.1186/2041-1480-2-S2-S2.
8
Putting biomedical ontologies to work.
Methods Inf Med. 2010;49(2):135-40. doi: 10.3414/ME9302. Epub 2010 Feb 5.
9
Ontology for vector surveillance and management.
J Med Entomol. 2013 Jan;50(1):1-14. doi: 10.1603/me12169.
10
The ontology of biological sequences.
BMC Bioinformatics. 2009 Nov 18;10:377. doi: 10.1186/1471-2105-10-377.

引用本文的文献

2
DIAMOND2GO: rapid Gene Ontology assignment and enrichment detection for functional genomics.
Front Bioinform. 2025 Aug 15;5:1634042. doi: 10.3389/fbinf.2025.1634042. eCollection 2025.
3
VO: The Vaccine Ontology.
bioRxiv. 2025 Aug 15:2025.08.12.669998. doi: 10.1101/2025.08.12.669998.
5
Next generation biobanking ontology: introducing-omics contextual data to biobanking ontology.
Bioinform Adv. 2025 Aug 7;5(1):vbaf131. doi: 10.1093/bioadv/vbaf131. eCollection 2025.
6
An ontological framework for organising and describing behaviours: The Human Behaviour Ontology.
Wellcome Open Res. 2025 Jun 30;9:237. doi: 10.12688/wellcomeopenres.21252.2. eCollection 2024.
7
Immune Biomarkers, Profiles, and Responses: A Vaccine Ontology Perspective.
bioRxiv. 2025 Jul 22:2025.07.18.665557. doi: 10.1101/2025.07.18.665557.
8
The Cell Ontology in the age of single-cell omics.
ArXiv. 2025 Jun 17:arXiv:2506.10037v2.
9
Automated descriptive cell type naming in flow and mass cytometry with CytoPheno.
Sci Rep. 2025 Jul 23;15(1):26750. doi: 10.1038/s41598-025-12153-w.
10
A fourfold pathogen reference ontology suite.
J Biomed Semantics. 2025 Jul 9;16(1):12. doi: 10.1186/s13326-025-00333-6.

本文引用的文献

2
Obol: integrating language and meaning in bio-ontologies.
Comp Funct Genomics. 2004;5(6-7):509-20. doi: 10.1002/cfg.435.
3
Framework for a protein ontology.
BMC Bioinformatics. 2007 Nov 27;8 Suppl 9(Suppl 9):S1. doi: 10.1186/1471-2105-8-S9-S1.
4
Linking of digital images to phylogenetic data matrices using a morphological ontology.
Syst Biol. 2007 Apr;56(2):283-94. doi: 10.1080/10635150701313848.
5
Spatial location and its relevance for terminological inferences in bio-ontologies.
BMC Bioinformatics. 2007 Apr 20;8:134. doi: 10.1186/1471-2105-8-134.
6
Phenotype ontologies: the bridge between genomics and evolution.
Trends Ecol Evol. 2007 Jul;22(7):345-50. doi: 10.1016/j.tree.2007.03.013. Epub 2007 Apr 9.
8
HL7 RIM: an incoherent standard.
Stud Health Technol Inform. 2006;124:133-8.
9
Modular organization of protein interaction networks.
Bioinformatics. 2007 Jan 15;23(2):207-14. doi: 10.1093/bioinformatics/btl562. Epub 2006 Nov 8.
10
Enrichment of OBO ontologies.
J Biomed Inform. 2007 Jun;40(3):300-15. doi: 10.1016/j.jbi.2006.07.003. Epub 2006 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验