Jonsson Mats, Nielsen Fredrik, Roth Olivia, Ekeroth Ella, Nilsson Sara, Hossain Mohammad Mohsin
KTH Chemical Science and Engineering, Nuclear Chemistry, Royal Institute of Technology, SE - 100 44 Stockholm, Sweden.
Environ Sci Technol. 2007 Oct 15;41(20):7087-93. doi: 10.1021/es070832y.
The dynamics of spent nuclear fuel dissolution in groundwater is an important part of the safety assessment of a deep geological repository for high level nuclear waste. In this paperwe discussthe most important elementary processes and parameters involved in radiation induced oxidative dissolution of spent nuclear fuel. Based on these processes, we also present a new approach for simulation of spent nuclear fuel dissolution under deep repository conditions. This approach accounts for the effects of fuel age, burn up, noble metal nanoparticle contents, aqueous H2 and HCO3- concentration, water chemistry, and combinations thereof. The results clearly indicate that solutes consuming H202 and combined effects of noble metal nanoparticles and H2 have significant impact on the rate of spent nuclear fuel dissolution. Using data from the two possible repository sites in Sweden, we have employed the new approach to estimate the maximum rate of spent nuclear fuel dissolution. This estimate indicates that H2 produced from radiolysis of groundwater alone will be sufficient to inhibit the dissolution completely for spent nuclear fuel older than 100 years.
乏核燃料在地下水中的溶解动力学是高放核废料深部地质处置库安全评估的重要组成部分。本文讨论了乏核燃料辐射诱导氧化溶解过程中最重要的基本过程和参数。基于这些过程,我们还提出了一种新的方法来模拟深部处置库条件下乏核燃料的溶解。该方法考虑了燃料年龄、燃耗、贵金属纳米颗粒含量、水中H2和HCO3-浓度、水化学及其组合的影响。结果清楚地表明,消耗H2O2的溶质以及贵金属纳米颗粒和H2的综合作用对乏核燃料的溶解速率有显著影响。利用瑞典两个可能的处置库场址的数据,我们采用新方法估算了乏核燃料的最大溶解速率。该估算表明,仅由地下水辐射分解产生的H2就足以完全抑制使用超过100年的乏核燃料的溶解。