Suppr超能文献

一株产酚恶臭假单胞菌S12构建体的转录组分析:产量提高的遗传和生理基础

Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production.

作者信息

Wierckx Nick J P, Ballerstedt Hendrik, de Bont Jan A M, de Winde Johannes H, Ruijssenaars Harald J, Wery Jan

机构信息

TNO Quality of Life, P.O. Box 5057, 2600 GB, Delft, The Netherlands.

出版信息

J Bacteriol. 2008 Apr;190(8):2822-30. doi: 10.1128/JB.01379-07. Epub 2007 Nov 9.

Abstract

The unknown genetic basis for improved phenol production by a recombinant Pseudomonas putida S12 derivative bearing the tpl (tyrosine-phenol lyase) gene was investigated via comparative transcriptomics, nucleotide sequence analysis, and targeted gene disruption. We show upregulation of tyrosine biosynthetic genes and possibly decreased biosynthesis of tryptophan caused by a mutation in the trpE gene as the genetic basis for the enhanced phenol production. In addition, several genes in degradation routes connected to the tyrosine biosynthetic pathway were upregulated. This either may be a side effect that negatively affects phenol production or may point to intracellular accumulation of tyrosine or its intermediates. A number of genes identified by the transcriptome analysis were selected for targeted disruption in P. putida S12TPL3. Physiological and biochemical examination of P. putida S12TPL3 and these mutants led to the conclusion that the metabolic flux toward tyrosine in P. putida S12TPL3 was improved to such an extent that the heterologous tyrosine-phenol lyase enzyme had become the rate-limiting step in phenol biosynthesis.

摘要

通过比较转录组学、核苷酸序列分析和靶向基因破坏,研究了携带tpl(酪氨酸-苯酚裂解酶)基因的重组恶臭假单胞菌S12衍生物提高苯酚产量的未知遗传基础。我们发现酪氨酸生物合成基因的上调以及trpE基因突变可能导致的色氨酸生物合成减少,这是苯酚产量提高的遗传基础。此外,与酪氨酸生物合成途径相关的降解途径中的几个基因也被上调。这可能是对苯酚产量产生负面影响的副作用,也可能表明酪氨酸或其中间体在细胞内积累。通过转录组分析鉴定出的一些基因被选择在恶臭假单胞菌S12TPL3中进行靶向破坏。对恶臭假单胞菌S12TPL3和这些突变体的生理生化检查得出结论,恶臭假单胞菌S12TPL3中朝向酪氨酸的代谢通量得到了改善,以至于异源酪氨酸-苯酚裂解酶成为苯酚生物合成中的限速步骤。

相似文献

2
Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose.
Appl Environ Microbiol. 2005 Dec;71(12):8221-7. doi: 10.1128/AEM.71.12.8221-8227.2005.
4
Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.
J Biotechnol. 2011 Jun 10;154(1):1-10. doi: 10.1016/j.jbiotec.2011.04.005. Epub 2011 Apr 22.
5
Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.
Metab Eng. 2018 May;47:121-133. doi: 10.1016/j.ymben.2018.03.011. Epub 2018 Mar 14.
7
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.
J Biotechnol. 2007 Oct 15;132(1):49-56. doi: 10.1016/j.jbiotec.2007.08.031. Epub 2007 Aug 23.
8
Engineering and comparison of non-natural pathways for microbial phenol production.
Biotechnol Bioeng. 2016 Aug;113(8):1745-54. doi: 10.1002/bit.25942. Epub 2016 Feb 4.
9
Localization and organization of phenol degradation genes of Pseudomonas putida strain H.
Mol Gen Genet. 1995 Apr 20;247(2):240-6. doi: 10.1007/BF00705655.
10
Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida.
Microbiology (Reading). 2007 Jun;153(Pt 6):1860-1871. doi: 10.1099/mic.0.2006/003681-0.

引用本文的文献

1
Two-Omics Probe on the Potential of Pseudomonas sp. GDMCC 1.1703 Under Phenol Stress.
Curr Microbiol. 2023 Nov 28;81(1):21. doi: 10.1007/s00284-023-03534-3.
4
Rational Engineering of Phenylalanine Accumulation in to Enable High-Yield Production of -Cinnamate.
Front Bioeng Biotechnol. 2019 Nov 20;7:312. doi: 10.3389/fbioe.2019.00312. eCollection 2019.
5
High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered VLB120.
Front Bioeng Biotechnol. 2019 Jun 12;7:130. doi: 10.3389/fbioe.2019.00130. eCollection 2019.
6
Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose.
Front Microbiol. 2015 Nov 24;6:1310. doi: 10.3389/fmicb.2015.01310. eCollection 2015.
7
Protective role of glycerol against benzene stress: insights from the Pseudomonas putida proteome.
Curr Genet. 2016 May;62(2):419-29. doi: 10.1007/s00294-015-0539-1. Epub 2015 Nov 26.
9
Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome.
Microb Biotechnol. 2013 Sep;6(5):598-611. doi: 10.1111/1751-7915.12061. Epub 2013 Jul 1.

本文引用的文献

1
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.
J Biotechnol. 2007 Oct 15;132(1):49-56. doi: 10.1016/j.jbiotec.2007.08.031. Epub 2007 Aug 23.
2
Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis.
J Bacteriol. 2007 Jul;189(14):5142-52. doi: 10.1128/JB.00203-07. Epub 2007 May 4.
3
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7797-802. doi: 10.1073/pnas.0702609104. Epub 2007 Apr 26.
4
Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies.
Appl Microbiol Biotechnol. 2007 Jul;75(5):1133-42. doi: 10.1007/s00253-007-0914-z. Epub 2007 Mar 17.
5
Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Apr;27(8):3065-86. doi: 10.1128/MCB.01084-06. Epub 2007 Feb 16.
7
Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12.
Environ Microbiol. 2006 Sep;8(9):1674-9. doi: 10.1111/j.1462-2920.2006.01056.x.
8
The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides.
Carbohydr Res. 2006 Oct 16;341(14):2456-61. doi: 10.1016/j.carres.2006.06.011. Epub 2006 Jul 28.
9
Functional genomics of stress response in Pseudomonas putida KT2440.
J Bacteriol. 2006 Jun;188(11):4079-92. doi: 10.1128/JB.00101-06.
10
Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene.
J Biol Chem. 2006 Apr 28;281(17):11981-91. doi: 10.1074/jbc.M509848200. Epub 2006 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验