Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
Metab Eng. 2018 May;47:121-133. doi: 10.1016/j.ymben.2018.03.011. Epub 2018 Mar 14.
Aromatic chemicals are important building blocks for the production of a multitude of everyday commodities. Currently, aromatics production relies almost exclusively on petrochemical processes. To achieve sustainability, alternative synthesis methods need to be developed. Here, we strived for an efficient production of phenol, a model aromatic compound of industrial relevance, from renewable carbon sources using the solvent-tolerant biocatalyst Pseudomonas taiwanensis VLB120. First, multiple catabolic routes for the degradation of aromatics and related compounds were inactivated, thereby obtaining the chassis strain P. taiwanensis VLB120Δ5 incapable of growing on 4-hydroxybenzoate (ΔpobA), tyrosine (Δhpd), and quinate (ΔquiC, ΔquiC1, ΔquiC2). In this context, a novel gene contributing to the quinate catabolism was identified (quiC2). Second, we employed a combination of reverse- and forward engineering to increase metabolic flux towards the product, using leads obtained from the analysis of aromatics producing Pseudomonas putida strains previously generated by mutagenesis. Phenol production was enabled by the heterologous expression of a codon-optimized and chromosomally integrated tyrosine phenol-lyase encoding gene from Pantoea agglomerans AJ2985 (PaTPL2). The genomic modification of endogenous genes encoding TrpE, AroF-1, and PheA, and the deletion of pykA improved phenol production 17-fold, while also minimizing the burden caused by plasmids and auxotrophies. The additional overexpression of known bottleneck enzymes (AroG, TyrA) derived from Escherichia coli further enhanced phenol titers. The best producing strain P. taiwanensis VLB120Δ5-TPL36 reached yields of 15.8% and 18.5% (Cmol/Cmol) phenol from glucose and glycerol, respectively, in a mineral medium without addition of complex nutrients. This is the highest yield ever reported for microbially produced phenol.
芳香族化学品是生产众多日常商品的重要基石。目前,芳香族化合物的生产几乎完全依赖于石化工艺。为了实现可持续性,需要开发替代合成方法。在这里,我们努力使用耐溶剂生物催化剂恶臭假单胞菌 VLB120 从可再生碳源高效生产苯酚,一种具有工业相关性的模型芳香族化合物。首先,我们使多个芳香族化合物和相关化合物的降解代谢途径失活,从而获得不能在 4-羟基苯甲酸(ΔpobA)、酪氨酸(Δhpd)和奎尼酸(ΔquiC、ΔquiC1、ΔquiC2)上生长的底盘菌株恶臭假单胞菌 VLB120Δ5。在这种情况下,鉴定出一个参与奎尼酸代谢的新基因(quiC2)。其次,我们采用反向和正向工程相结合的方法,利用先前通过诱变生成的芳香族产生假单胞菌菌株的分析获得的线索,增加产物的代谢通量。通过异源表达来自成团泛菌 AJ2985 的密码子优化和染色体整合的酪氨酸酚裂解酶编码基因(PaTPL2),实现了苯酚的生产。通过对编码 TrpE、AroF-1 和 PheA 的内源基因进行基因组修饰,以及删除 pykA,使苯酚产量提高了 17 倍,同时最大限度地减少了质粒和营养缺陷的负担。来自大肠杆菌的已知瓶颈酶(AroG、TyrA)的额外过表达进一步提高了苯酚的产量。最佳生产菌株恶臭假单胞菌 VLB120Δ5-TPL36 在不含复杂营养物质的矿物培养基中分别以葡萄糖和甘油为碳源,苯酚的产量达到 15.8%和 18.5%(Cmol/Cmol)。这是微生物生产苯酚的最高产量。