Suppr超能文献

视网膜血管系统的提取与重建。

Extraction and reconstruction of retinal vasculature.

作者信息

Ahmad Fadzil M H, Izhar Lila Iznita, Venkatachalam P A, Karunakar T V N

机构信息

Intelligent Imaging Technology Group, Electrical and Electronic Engineering Programme, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, Tronoh, Perak, Malaysia.

出版信息

J Med Eng Technol. 2007 Nov-Dec;31(6):435-42. doi: 10.1080/03091900601111201.

Abstract

Information about retinal vasculature morphology is used in grading the severity and progression of diabetic retinopathy. An image analysis system can help ophthalmologists make accurate and efficient diagnoses. This paper presents the development of an image processing algorithm for detecting and reconstructing retinal vasculature. The detection of the vascular structure is achieved by image enhancement using contrast limited adaptive histogram equalization followed by the extraction of the vessels using bottom-hat morphological transformation. For reconstruction of the complete retinal vasculature, a region growing technique based on first-order Gaussian derivative is developed. The technique incorporates both gradient magnitude change and average intensity as the homogeneity criteria that enable the process to adapt to intensity changes and intensity spread over the vasculature region. The reconstruction technique reduces the required number of seeds to near optimal for the region growing process. It also overcomes poor performance of current seed-based methods, especially with low and inconsistent contrast images as normally seen in vasculature regions of fundus images. Simulations of the algorithm on 20 test images from the DRIVE database show that it outperforms many other published methods and achieved an accuracy range (ability to detect both vessel and non-vessel pixels) of 0.91 - 0.95, a sensitivity range (ability to detect vessel pixels) of 0.91 - 0.95 and a specificity range (ability to detect non-vessel pixels) of 0.88 - 0.94.

摘要

视网膜血管形态学信息被用于评估糖尿病视网膜病变的严重程度和进展情况。图像分析系统有助于眼科医生进行准确且高效的诊断。本文介绍了一种用于检测和重建视网膜血管的图像处理算法的开发。血管结构的检测是通过使用对比度受限自适应直方图均衡化进行图像增强,然后使用底帽形态学变换提取血管来实现的。为了重建完整的视网膜血管,开发了一种基于一阶高斯导数的区域生长技术。该技术将梯度幅度变化和平均强度都纳入作为同质性标准,使该过程能够适应强度变化以及强度在血管区域的分布。该重建技术将区域生长过程所需的种子数量减少到接近最优。它还克服了当前基于种子的方法的性能不佳问题,特别是对于眼底图像血管区域中常见的低对比度和对比度不一致的图像。在来自DRIVE数据库的20张测试图像上对该算法进行的模拟表明,它优于许多其他已发表的方法,实现了0.91 - 0.95的准确率范围(检测血管和非血管像素的能力)、0.91 - 0.95的灵敏度范围(检测血管像素的能力)以及0.88 - 0.94的特异性范围(检测非血管像素的能力)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验