Youssif A R, Ghalwash A Z, Ghoneim A R
Department of Computer Science, Helwan University, Cairo, Egypt.
IEEE Trans Med Imaging. 2008 Jan;27(1):11-8. doi: 10.1109/TMI.2007.900326.
Optic disc (OD) detection is a main step while developing automated screening systems for diabetic retinopathy. We present in this paper a method to automatically detect the position of the OD in digital retinal fundus images. The method starts by normalizing luminosity and contrast through out the image using illumination equalization and adaptive histogram equalization methods respectively. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Hence, a simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity. The retinal vessels are segmented using a simple and standard 2-D Gaussian matched filter. Consequently, a vessels direction map of the segmented retinal vessels is obtained using the same segmentation algorithm. The segmented vessels are then thinned, and filtered using local intensity, to represent finally the OD-center candidates. The difference between the proposed matched filter resized into four different sizes, and the vessels' directions at the surrounding area of each of the OD-center candidates is measured. The minimum difference provides an estimate of the OD-center coordinates. The proposed method was evaluated using a subset of the STARE project's dataset, containing 81 fundus images of both normal and diseased retinas, and initially used by literature OD detection methods. The OD-center was detected correctly in 80 out of the 81 images (98.77%). In addition, the OD-center was detected correctly in all of the 40 images (100%) using the publicly available DRIVE dataset.
视盘(OD)检测是开发糖尿病视网膜病变自动筛查系统的一个主要步骤。我们在本文中提出一种在数字视网膜眼底图像中自动检测视盘位置的方法。该方法首先分别使用光照均衡和自适应直方图均衡方法对整个图像的亮度和对比度进行归一化。视盘检测算法基于匹配视网膜血管的预期方向模式。因此,提出了一个简单的匹配滤波器来大致匹配视盘附近血管的方向。使用一个简单的标准二维高斯匹配滤波器对视网膜血管进行分割。随后,使用相同的分割算法获得分割后的视网膜血管的血管方向图。然后对分割后的血管进行细化,并使用局部强度进行滤波,最终表示视盘中心候选区域。测量调整为四种不同尺寸的所提出的匹配滤波器与每个视盘中心候选区域周围区域的血管方向之间的差异。最小差异提供对视盘中心坐标的估计。使用STARE项目数据集的一个子集对所提出的方法进行评估,该子集包含81张正常和患病视网膜的眼底图像,这些图像最初被文献中的视盘检测方法使用。在81张图像中的80张(98.77%)中正确检测到了视盘中心。此外,使用公开可用的DRIVE数据集,在所有40张图像(100%)中都正确检测到了视盘中心。