Martinez-Perez M Elena, Hughes Alun D, Thom Simon A, Bharath Anil A, Parker Kim H
Department of Computer Science, Institute of Research in Applied Mathematics and Systems, UNAM, Apdo. Postal 20-726, México, DF 01000, Mexico.
Med Image Anal. 2007 Feb;11(1):47-61. doi: 10.1016/j.media.2006.11.004. Epub 2007 Jan 3.
The morphology of the retinal blood vessels can be an important indicator for diseases like diabetes, hypertension and retinopathy of prematurity (ROP). Thus, the measurement of changes in morphology of arterioles and venules can be of diagnostic value. Here we present a method to automatically segment retinal blood vessels based upon multiscale feature extraction. This method overcomes the problem of variations in contrast inherent in these images by using the first and second spatial derivatives of the intensity image that gives information about vessel topology. This approach also enables the detection of blood vessels of different widths, lengths and orientations. The local maxima over scales of the magnitude of the gradient and the maximum principal curvature of the Hessian tensor are used in a multiple pass region growing procedure. The growth progressively segments the blood vessels using feature information together with spatial information. The algorithm is tested on red-free and fluorescein retinal images, taken from two local and two public databases. Comparison with first public database yields values of 75.05% true positive rate (TPR) and 4.38% false positive rate (FPR). Second database values are of 72.46% TPR and 3.45% FPR. Our results on both public databases were comparable in performance with other authors. However, we conclude that these values are not sensitive enough so as to evaluate the performance of vessel geometry detection. Therefore we propose a new approach that uses measurements of vessel diameters and branching angles as a validation criterion to compare our segmented images with those hand segmented from public databases. Comparisons made between both hand segmented images from public databases showed a large inter-subject variability on geometric values. A last evaluation was made comparing vessel geometric values obtained from our segmented images between red-free and fluorescein paired images with the latter as the "ground truth". Our results demonstrated that borders found by our method are less biased and follow more consistently the border of the vessel and therefore they yield more confident geometric values.
视网膜血管的形态可以作为糖尿病、高血压和早产儿视网膜病变(ROP)等疾病的重要指标。因此,测量小动脉和小静脉形态的变化具有诊断价值。在此,我们提出一种基于多尺度特征提取自动分割视网膜血管的方法。该方法通过使用强度图像的一阶和二阶空间导数来克服这些图像中固有对比度变化的问题,这些导数可提供有关血管拓扑结构的信息。这种方法还能够检测不同宽度、长度和方向的血管。在多遍区域生长过程中,使用梯度幅度在尺度上的局部最大值和黑塞张量的最大主曲率。生长过程利用特征信息和空间信息逐步分割血管。该算法在取自两个本地数据库和两个公共数据库的无赤光和荧光素视网膜图像上进行了测试。与第一个公共数据库比较得出的真阳性率(TPR)为75.05%,假阳性率(FPR)为4.38%。第二个数据库的值为TPR 72.46%,FPR 3.45%。我们在两个公共数据库上的结果在性能上与其他作者的结果相当。然而,我们得出结论,这些值不够敏感,不足以评估血管几何形状检测的性能。因此,我们提出一种新方法,该方法使用血管直径和分支角度的测量作为验证标准,将我们分割的图像与从公共数据库手动分割的图像进行比较。对公共数据库中两幅手动分割图像之间的比较显示,不同受试者之间的几何值存在很大差异。最后进行了一项评估,将从我们分割的无赤光和荧光素配对图像中获得的血管几何值与以荧光素图像为“真实情况”进行比较。我们的结果表明,我们的方法找到的边界偏差较小,更一致地遵循血管边界,因此产生的几何值更可靠。