Suppr超能文献

小区域健康状况评估:州立法选区的哮喘症状患病率

Estimating health conditions for small areas: asthma symptom prevalence for state legislative districts.

作者信息

Mendez-Luck Carolyn A, Yu Hongjian, Meng Ying-Ying, Jhawar Mona, Wallace Steven P

机构信息

UCLA School of Public Health, Department of Community Health Sciences, UCLA Center for Health Improvement in Minority Elders/Resource Centers for Minority Aging Research, Los Angeles, CA 90095-1772, USA.

出版信息

Health Serv Res. 2007 Dec;42(6 Pt 2):2389-409. doi: 10.1111/j.1475-6773.2007.00793.x.

Abstract

RESEARCH OBJECTIVE

To create prevalence estimates of asthma symptoms for California legislative districts.

DATA SOURCES

Three main data sources were used for this study: 2001 California Health Interview Survey, 2000 Census, and 2000-2002 March Current Population Surveys.

STUDY DESIGN

Secondary data analyses were conducted from cross-sectional data to distribute the joint probability of ever having an asthma diagnosis and symptoms in the last 12 months within an Assembly district. We applied hierarchical logistic regressions to estimate the parameters for selected survey and census data that predicted the probabilities of diagnosed asthmatics with asthma symptoms. Predictors included individual-level variables and contextual variables at zip code levels.

PRINCIPAL FINDINGS

Asthma symptom prevalence geographically varied by age within and across Assembly districts throughout California.

CONCLUSIONS

With modest investments in establishing analytic data files and estimating regression parameters for target conditions, small area estimation (SAE) procedures can create health data estimates not otherwise available at the sub-county level. Applying SAE procedures to asthma symptom prevalence suggest that these data can become essential reference tools for advocates and policy makers currently addressing this and other public health concerns in the state.

摘要

研究目标

估算加利福尼亚州各立法选区哮喘症状的患病率。

数据来源

本研究使用了三个主要数据源:2001年加利福尼亚州健康访谈调查、2000年人口普查以及2000 - 2002年3月当前人口调查。

研究设计

对横断面数据进行二次数据分析,以分布在一个议会选区内在过去12个月内曾被诊断患有哮喘及出现症状的联合概率。我们应用分层逻辑回归来估计选定的调查和普查数据的参数,这些数据预测了被诊断为哮喘的患者出现哮喘症状的概率。预测因素包括个人层面变量和邮政编码层面的背景变量。

主要发现

在整个加利福尼亚州的议会选区内及选区之间,哮喘症状患病率在地理上因年龄而异。

结论

通过适度投入建立分析数据文件并估计目标疾病的回归参数,小区域估计(SAE)程序可以生成在县以下层面无法获得的健康数据估计值。将SAE程序应用于哮喘症状患病率表明,这些数据可以成为目前正在处理该州此问题及其他公共卫生问题的倡导者和政策制定者的重要参考工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验