Thaning Johan, Högberg Carl-Johan, Stevensson Baltzar, Lyubartsev Alexander P, Maliniak Arnold
Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
J Phys Chem B. 2007 Dec 6;111(48):13638-44. doi: 10.1021/jp075278t. Epub 2007 Nov 13.
This paper describes an analysis of NMR dipolar couplings in a bilayer formed by dimyristoylphosphatidylcholine (DMPC). The couplings are calculated from a trajectory generated in a molecular dynamics (MD) simulation based on a realistic atom-atom interaction potential. The analysis is carried out employing a recently developed approach that focuses on the construction of the conformational distribution function. This approach is a combination of two models, the additive potential (AP) model and the maximum entropy (ME) method, and is therefore called APME. In contrast to the AP model, the APME procedure does not require an intuition-based choice of the functional form of the torsional potential and is, unlike the ME method, applicable to weakly ordered systems. The conformational distribution function for the glycerol moiety of the DMPC molecule derived from the APME analysis of the dipolar couplings is in reasonable agreement with the "true" distributions calculated from the trajectory. Analyses of dipolar couplings derived from MD trajectories can, in general, serve as guidelines for experimental investigations of bilayers and other complex biological systems.
本文描述了对由二肉豆蔻酰磷脂酰胆碱(DMPC)形成的双层膜中核磁共振偶极耦合的分析。这些耦合是根据基于实际原子 - 原子相互作用势的分子动力学(MD)模拟生成的轨迹计算得出的。分析采用了一种最近开发的方法,该方法侧重于构象分布函数的构建。这种方法是两种模型的结合,即加和势(AP)模型和最大熵(ME)方法,因此称为APME。与AP模型不同,APME程序不需要基于直觉选择扭转势的函数形式,并且与ME方法不同,它适用于弱有序系统。通过对偶极耦合的APME分析得出的DMPC分子甘油部分的构象分布函数与从轨迹计算出的“真实”分布合理一致。一般来说,从MD轨迹得出的偶极耦合分析可以作为双层膜和其他复杂生物系统实验研究的指导。